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Causal questions are ubiquitous

e To predict the effect of actions and decide effective policies, we need to understand:
1) what causes what and 2) how?
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Causal questions are ubiquitous

Sara Magliacane (UvA)

e To predict the effect of actions and decide effective policies, we need to understand:
1) what causes what and 2) how?
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Vaccine effectiveness

Human influence has warmed the climate

Change in average global temperature relative to 1850-1900,
showing observed temperatures and computer simulations
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Climate change policy
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Protein signalling networks
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A working definition of causality in machine learning

Informal definition: A variable X causes another variable Y, if changing (the
distribution of) X, e.g. by fixing its value, changes (the distribution of) Y
Intervention

Challenge: estimate the causal effect of an intervention, when we do not
have (all possible) interventional data (e.g. observational data)

Representation: We can represent causal relations in causal graphs nodes
are random variables, edges causal relations
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Can we learn causal variables from unstructured high-dimensional data?

Towards Causal Representation Learning

Bernhard Schoélkopf T, Francesco Locatello T, Stefan Bauer *, Nan Rosemary Ke *, Nal Kalchbrenner
Anirudh Goyal, Yoshua Bengio

Abstract—The two fields of machine learning and graphical et al., 2018], and speech recognition [Graves et al., 2013], a
causality arose and developed separately. However, there is now  gybstantial body of literature explored the robustness of the
cross-pollination and increasing interest in both fields to benefit .. i tion of state-of-the-art deep neural network architectures.

from the advances of the other. In the present paper, we review . L . .
fundamental concepts of causal inference and relate them to The underlying motivation originates from the fact that in the

crucial open problems of machine learning, including transfer r€al world there is often little control over the distribution from

and generahzatlon, thereby assaymg how causallty can contmbute which the data comes from. In computer vision [Geirhos et al.,

% 2018, Shetty et al., 2019], changes in the test distribution

OPPOS'te direction: we note that most work in causallty starts ¥ may, for instance, come from aberrations like camera blur,

from the premise that the causal variables are given. A central §

problem for AI and causality is, thus, causal representation % noise or compression quality [Hendrycks and Dietterich, 2019,

3 learmng, the dlscovery of lngh-level causal vanables from low- ¥ Karahan et al., 2016, Michaelis et al., 2019, Roy et al.,
L. Jevel observations. Einallv..we . delineate some_implications_of & 2018], or from shifts, rotations, or viewpoints [Azulay and

- causahty for'machme learning and propose. key research areas Weiss, 2019, Barbu et al., 2019, Engstrom et al., 2017, Zhang,
at the intersection of both communities. 2019]. Motivated by this, new benchmarks were proposed to
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Causal Representation Learning (CRL)

Can we predict the effect of interventions
If the causal variables are not directly
observed and we do not have labels for
them, but we have high-dimensional
observations of the system?



https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/

&3

,83835 Causal representation learning in temporal settings with actions Sara Magliacane (UvA)

Causal Representation Learning (CRL)

Can we predict the effect of interventions
If the causal variables are not directly
observed and we do not have labels for
them, but we have high-dimensional
observations of the system?

Task 1: identify/disentangle

the causal variables from
observations
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Causal Representation Learning (CRL)

Can we predict the effect of interventions
If the causal variables are not directly
observed and we do not have labels for
them, but we have high-dimensional
observations of the system?

Task 1: identify/disentangle
the causal variables from
observations

Task 2: learn causal relations
between them from data
(causal discovery)
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How well can we actually recover these causal variables?

* A lot of work in CRL focuses on theoretical guarantees in learning high-level
causal variables from low-level observations, under different assumptions

* In general without any supervision, we cannot identify the exact causal
variables, but we can identify them up to an equivalence class

Identifiability up to component-wise transformations Identifiability up to permutation and
component-wise transformations
ill A -
<1 : <1 211 A 2
% L. Z Zn| 3 5
~ hl
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CRL in temporal settings with actions

* Natural setting for learning from interventions/actions: “before” and “after”
* E.g. sequential decision making, RL, planning, robotics, ...

» Often we want to extract semantic features from images in an unsupervised way

» Causal representation learning (CRL) - learn high level causal variables and
causal relations between them from low level observations

10
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Modelling causality in time series: Dynamic Bayesian Networks

* Extension of Bayesian networks to temporal settings, a type of template graph.
 Common assumptions for Dynamic Bayesian Networks:

 1-Markov assumption: only vars from t-1 (1 timestep back) can cause vars at t

e Stationarity: the transition model (edges) are the same across pairs of time steps

* No instantaneous effects: there are no edges between vars at same timestep

| S1.t S1.1 51,2 81,3
S2,_1 S2’ S S -
t t _ &l 22 523 MDPs in RL are
5341 oy — oo S5y 53 S35 e an example
t=1...T 1 2 3

Timestep t-1 Timestep t

11
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Goal: CRL in temporal settings
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Temporal Intervened Sequences (TRIS)

 We want to learn the underlying causal
@ process from temporal sequences of high-

dimensional data {X'} _,, e.g. images

Observations
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Temporal Intervened Sequences (TRIS)

4 N o  \We want to learn the underlying causal
G Gl "<:> process from temporal sequences of high-
b ~/ dimensional data {X'},_,, e.g. images
Temporal causal Observations
relations \

 We assume that the latent causal process is

4 N s
cst) e (OR a Dynamic Bayesian network with K
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Temporal Intervened Sequences (TRIS)

4 N o  \We want to learn the underlying causal

G Gl "C) process from temporal sequences of high-
b ~/ dimensional data {X'},_,, e.g. images

Temporal causal \ Observations
relations
~ N L  We assume that the latent causal process is
Ccttl . . :
Cytt Ci! a Dynamic Bayesian network with K

\_ A multidimensional causal variables

Interventions
‘  We assume that (soft or perfect)

Latent Interventions can happen on the system
o e and we observe the binary targets /'
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CITRIS: Causal Identifiability from TempoRal Intervened Sequences

Phillip Lippe, Sara Magliacane, Sindy Léwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves
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Stochastic intervention
(we don’t know where the ball will be)
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Stochastic intervention The paddles continue moving as
(we don’t know where the ball will be) usual (not counterfactual)
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A variational autoencoder architecture: CITRIS-VAE
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 We have multidimensional causal factors, so we need to learn an
assignment function y that matches each C; with the assigned latents

P B ————————W—W——————W——————————————— —

Latent to causal

i variable assignment Ci . Z‘Pi
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A normalizing flow architecture: CITRIS-NF

 We can leverage a pretrained autoencoder to get a low-dimensional latent space
 (Can be trained on observational data

 Then we train a normalizing flow to disentangle the variables (with a transition prior)
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4
~83

CITRIS: Simplified identification results

* TRIS setting, sufficient latent dimensions

. Assumption 1: Each Il.t is not a deterministic function of I].t

o [Simplification] Assumption 2: Interventions have an effect on all
components of any multi-dimensional causal variable

o [Simplification] Assumption 3: There are “enough” different types of
interventions ( O(log,K) )

« Then we can identify causal variables Cj, ..., Cr up to unknown invertible
element-wise transformations
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Experiments: Interventional Pong

 Train: We learn encoder f on a dataset with potentially dependent causal variables
from images { X’ thl and intervention targets {/’ }thl -> unsupervised

« Test: We evaluate f on a dataset with independent causal variables and evaluate
correlation with ground truth causal variables.
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Experiments: Temporal Causal3Dldent

shape + spotlight colors + rot
Ground Truth Prediction

Causal graph learnt with CITRIS-NF
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Experiments: Temporal Causal3Dldent

shape + spotlight colors + rot

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Causal graph learnt with CITRIS-NF

Image 1 Image 2 Ground Truth Prediction
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Instantaneous effects: ICITRIS [Lippe et al 2023a]

: o

Temporal causal
relations

Instantaneous Observations
causal relations
4 I
Ot+1
. . . >
e Soft interventions are not enough to disentanagle @ @ @ @
) J J X — %5
instantaneous “components” |
] ] ] Interventions
 Partially perfect interventions: a soft @ @ @
intervention that is perfect in terms of
instantaneous parents Latent

confounding

 Estimate jointly the causal variables and the graph


https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/

&3
,83835 Causal representation learning in temporal settings with actions Sara Magliacane (UvA)

Summary CITRIS & iCITRIS

 Pros:
* Multidimensional causal variables
* No parametric assumptions
* Work with arbitrary graphs, even instantaneous effects
* |dentifiability up to component-wise transformations

e Cons:

* Need (sufficiently diverse) interventional data
 Need known intervention targets -> can we get rid of this?

29


https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/
https://uvadl2c.github.io/

&3

,83835 Causal representation learning in temporal settings with actions Sara Magliacane (UvA)

BISCUIT: Causal Representation Learning from Binary Interactions

Phillip Lippe, Sara Magliacane, Sindy Léwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves

Observations BISCUIT &

Binary Interactions for Causal Identifiability

\ Latent variables
Encoder - .

Encoder

a2

https://phlippe.github.io/BISCUIT/ 30
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An extension of TRIS: the BISCUIT model

« The binary intervention variables are unobserved, but we observe an action/regime R’
» The regime R’ can be caused by the previous state C'~! and previous regime R""!

» We assume the effect of R’ can be encoded in binary interaction variables I’ = f(R', C'™1)

@ Observations @
. Temporal causal
Causal variables relations
E—\— N
@@ - @ |
2NN | \ /
\Intefactions\‘é\\@ \\\\\A@

Regimes
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Assumption 1: Action/Regime can be encoded in binary interactions

« Assumption 1: interactions between the regime and each causal variable can be described
by a binary variable (although the binding can change across timesteps based on state)
 Each causal variable has exactly two mechanisms (same as CITRIS)

Time step t+1

Another example:
collisions between
agent and objects that
change dynamics of

Time step t No Interaction

p(Cl|C", I} = 0)

objects

Interaction

p(CHIC™ I = 1)

These can depend on
previous state (position
of objects)
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Assumption 2: Distinct interaction patterns

. A causal variable C; has a distinct interaction pattern, if I! = f(C'~', R") is not

a function of any other interaction variable Ijt

* Intuitively: if we always intervene and perturb two objects at the same time, we

will not get enough information from the perturbation to distinguish them.

o If Il.t are independent of C’ (as in CITRIS), we only need O(logK) distinct values
of R’ for full identifiability
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BISCUIT - identifiability

 Assumption 1: binary interactions
 Assumption 2: distinct interaction patterns with “enough” types of interactons

 Assumption 3: the mechanisms vary sufficiently either over interactions or time

A. (Dynamics Variability) Each variable’s log-likelihood B. (Time Variability) For any C* € C, there exist K + 1 Effect of interaction
difference is twice differentiable and not always zero: different values of C*~1 denoted with ¢!, ...,c5 ™1 € C, . .
: K+1 i given previous state
82A(C’,f|Ct_1) for which the vectors vy, ..., Vg € R wit

0(C?)? 7 0; _ [oa(cilct~t=c") oA(ct|Cct =Rt T
Z Vi = 5C? 5C7

vCt, 30Tt is different across

causal variables

p(CH C =1 I'=1) similar to ICA are linearly independent.

p(Ci|CL I =1)

A(CH| C1) = log

e
wwl
O

—> Maximising likelihood allows for identifiability up C,

=
>~

[ 2N} q
(\®)

gl

to permutation and component-wise transformations c P
K K

- - 34
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BISCUIT architectures

Observations BISCUIT & BISCUIT-VAE
\ Latent variables ’Ct - = 41qu(zf’”fl?t) [logpg(;ct‘zt)] T
Encoder - - 4chp(zt‘llwt‘l) [KL (q¢(zt‘$t)pr (Zt|2t_1a Rt))]
[0 Transition prlorj.w
7.0 )
- MLP ‘\\j = pw(zt‘zt—];Rt):pr,i (Z,f‘zt_];MLP({)z (Rt,zt_l))
— O \\ .
Encoder BISCUIT-NF
/

Leverage pretrained autoencoder
+ normalizing flows
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4
83

BISCUIT on CausalWorld and iTHOR

* CausalWorld - three finger robot manipulating objects
* Variables: object position, frictions, colors, etc.
* Action: 9-dimensional motor angles (3 per finger)

* [THOR - kitchen environment, action is (Xx,y) position of click

Table 1: R? scores (diag 1/ sep |) for the identification of
the causal variables on CausalWorld and iTHOR.

Models CausalWorld iTHOR
1IVAE (Khemakhem et al., 2020a) 0.28 /0.00 0.48 /0.35
LEAP (Yao et al., 2022b) 0.30/0.00 0.63/0.45

DMS (Lachapelle et al., 2022b) 0.32/0.00 0.61/0.40
BISCUIT-NF (Ours) 0.97/0.01 0.96 / 0.15
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(c) LEAP (Yao et al., 2022b)
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(b) DMS (Lachapelle et al., 2022b)
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(d) 1VAE (Khemakhem et al., 2020a)

BISCUIT on CausalWorld - R? metric
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the most correlated
latent variable
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(d) 1iVAE (Khemakhem et al., 2020a)

(c) LEAP (Yao et al., 2022b)
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BISCUIT on iTHOR - Generating new images

Input image 1 Input image 2 Generated Output Latents from image 2
{h 1P . " .

Microwave Open
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BISCUIT on iTHOR - dynamic interaction map

Original image Overlapped image Interaction map

.
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Conclusions & Future work

» Causal representation learning (CRL) is an exciting new field that allows us to
extract causal semantics from images with provable guarantees

 CRL can work on realistic images/simulators in temporal settings with actions
* CITRIS does not have parametric or graphical assumptions, but requires
knowing the intervention targets

 BISCUIT overcomes this limitation, requiring only a labelled action

e Future work:

« Gap between theory and real-world data -> working on CRL without actions
 Downstream tasks for CRL -> combination with RL, XAl
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