

From Pixels to Nucleotides

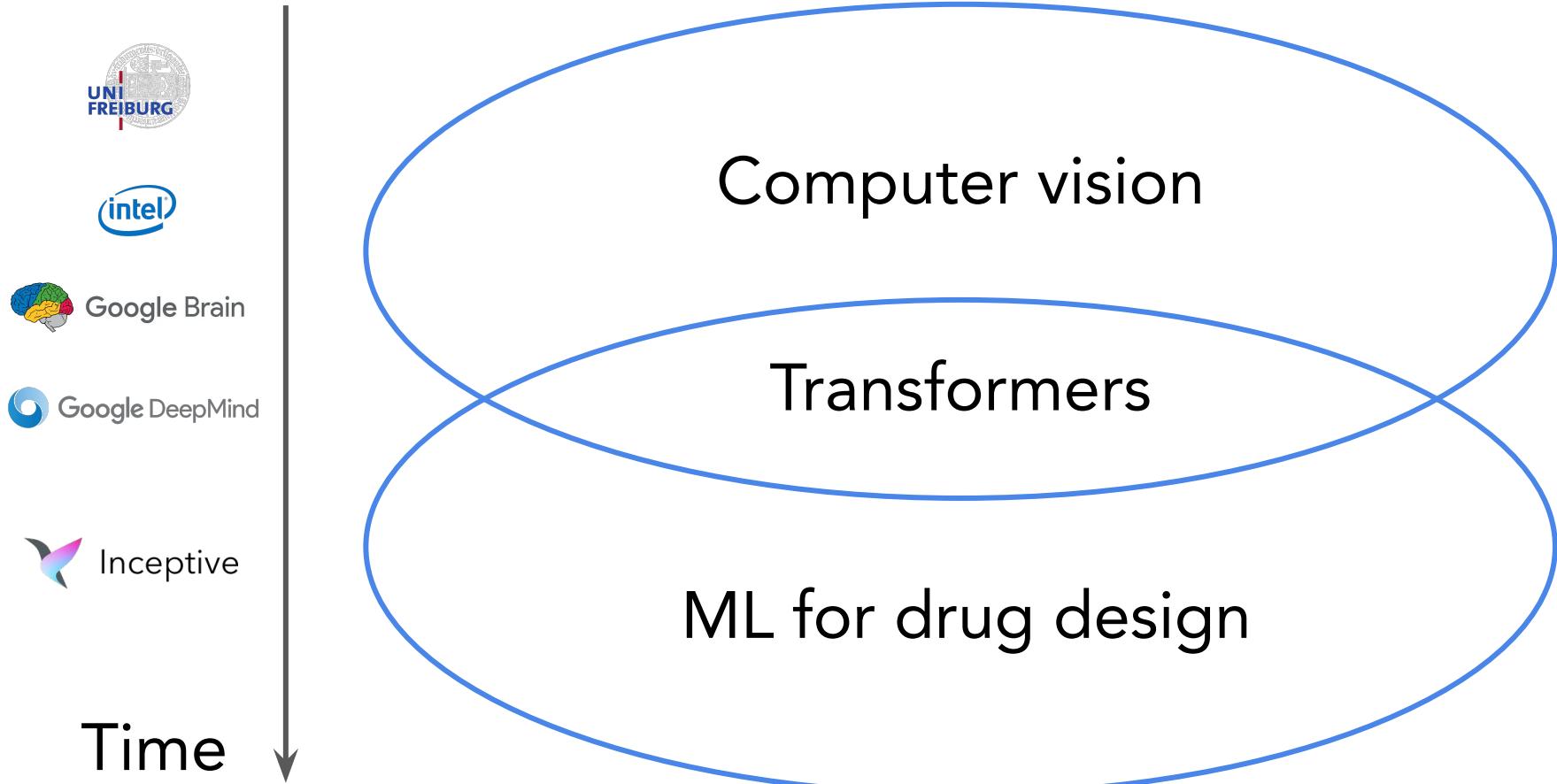
Deep Learning for Computer Vision and Drug Design

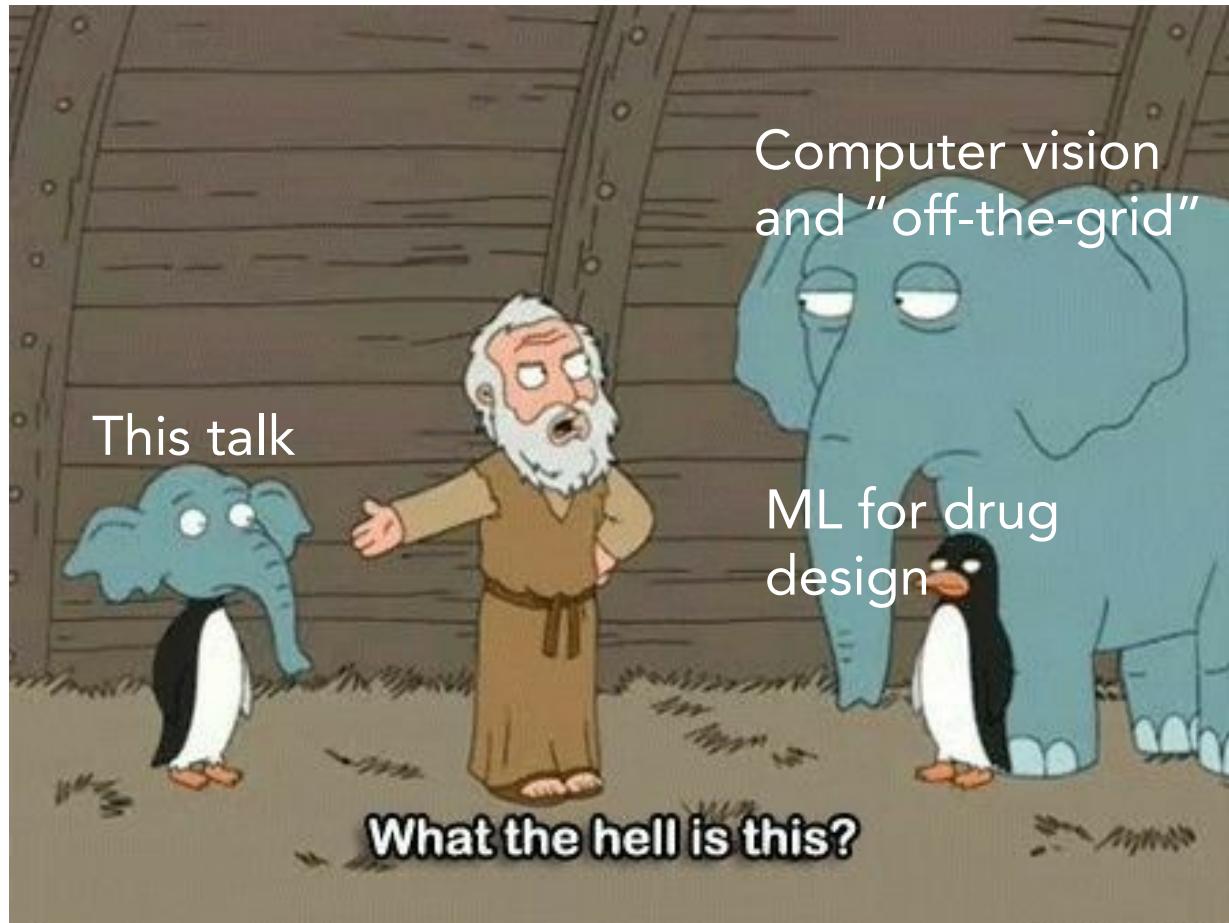
Alexey Dosovitskiy

ML in PL, Warsaw

October 17, 2025

Research Bio tl;dr





What the hell is this?

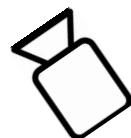
The World is 3D and Dynamic

<https://www.youtube.com/shorts/vOcqoLGX2jl>

The World is 3D and Dynamic

<https://www.youtube.com/shorts/vOcqoLGX2jl>

Digital Images Live “On The Grid” of the Camera Sensor



We naturally see the world as it is – 3D and dynamic

How do we make computer vision systems that do too?

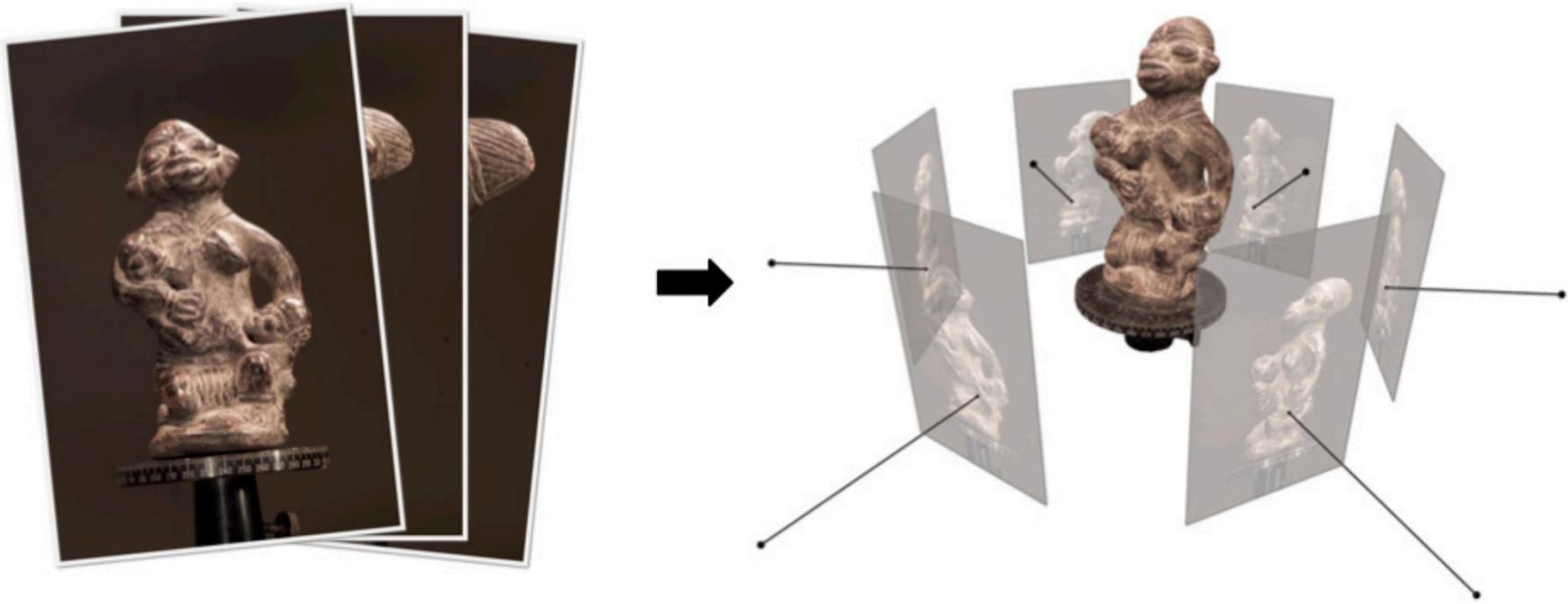
Why “off the grid”?

Efficiency!

The right inductive bias
for vision

Especially for video

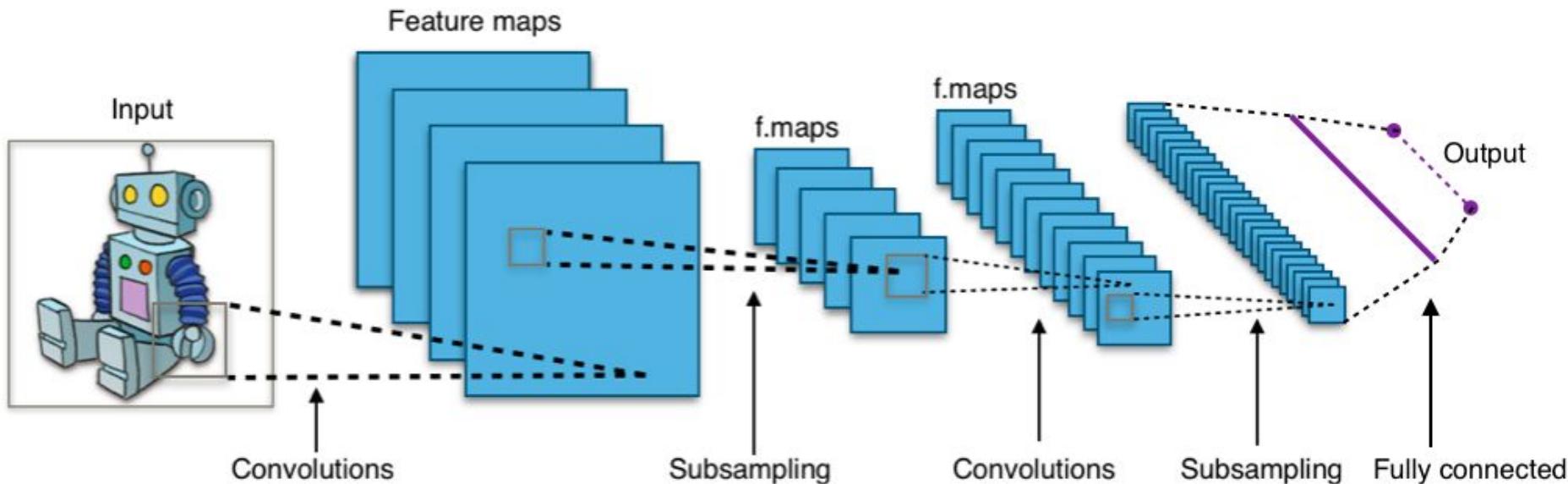
Aside: 3D Reconstruction



A large successful field, but not deep-learning-native

Image from Furukawa & Hernández

ConvNets Operate on the Grid



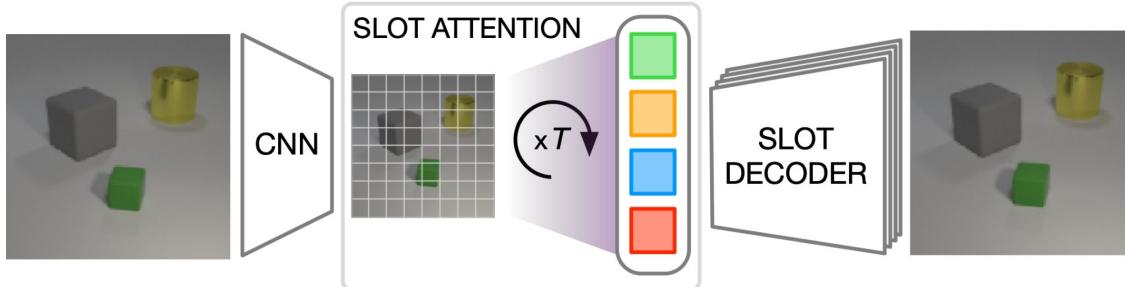
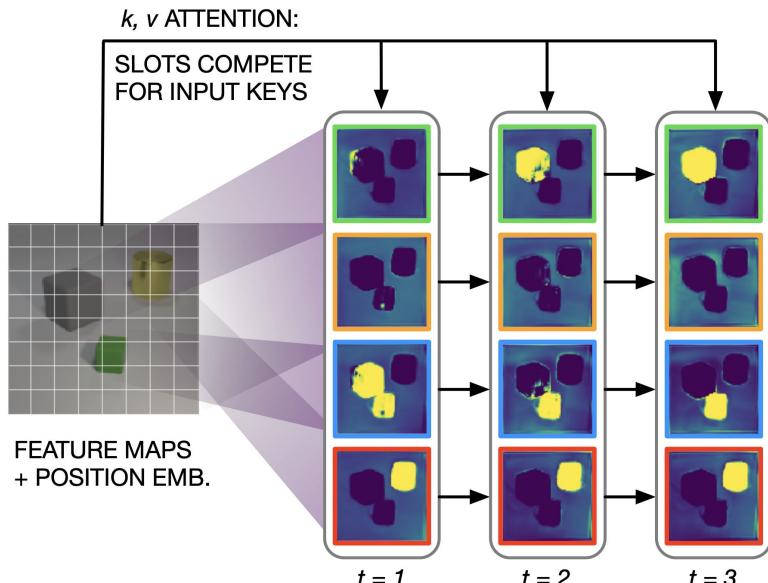
How do we take them “off the grid”?

Take 1: Slot Attention

Task: map feature maps of a convolutional model to a set

Approach: Iterative “transposed” attention of K “slots” over the feature maps (~learned soft k-means)

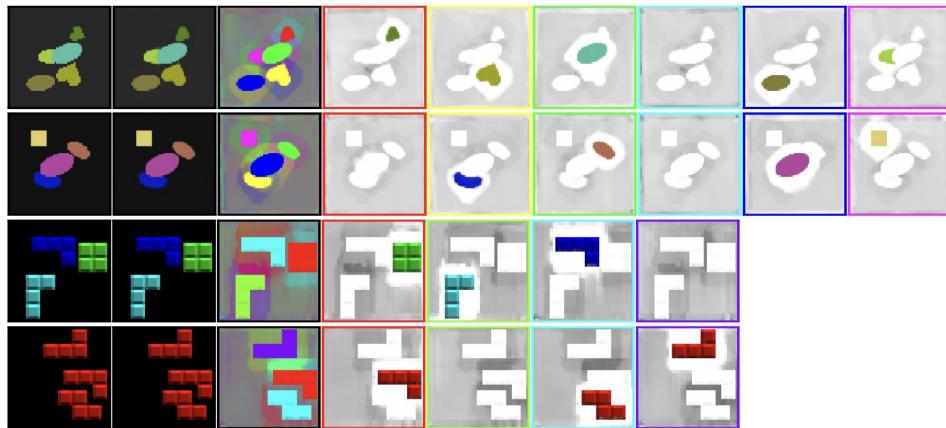
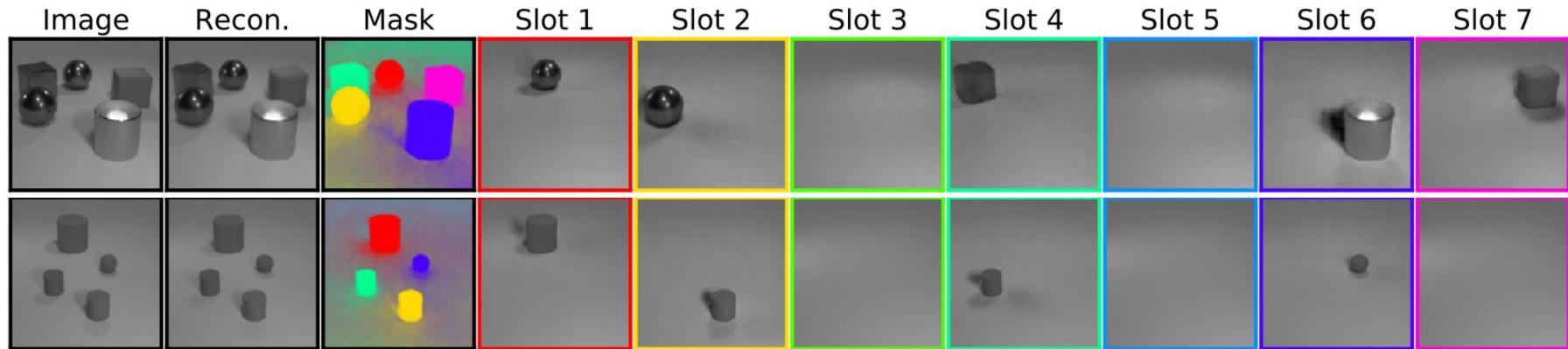
Applications: unsupervised object discovery, set prediction



Slot Attention

Works well on simple synthetic tasks

But does not scale to the real world



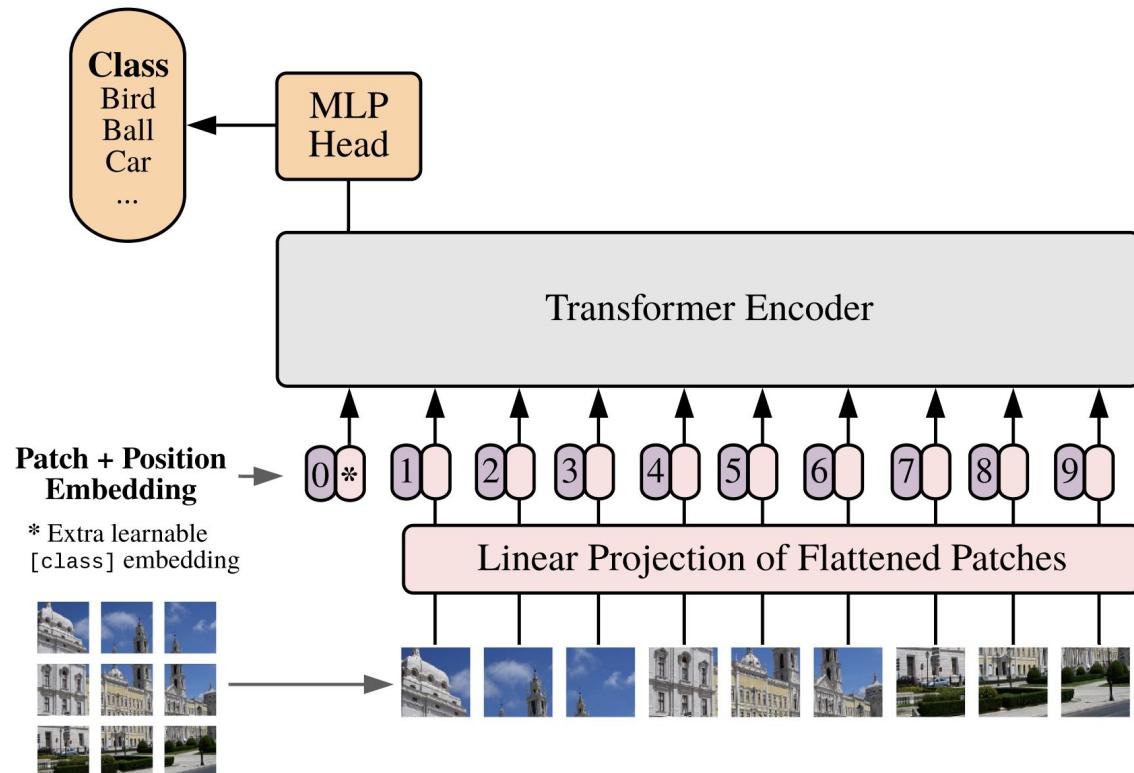
How do we make a scalable “off-the-grid” model?

Take 2: Vision Transformers

ConvNets operate “on the grid” – local 2D processing

What operates “off the grid”? Transformers!

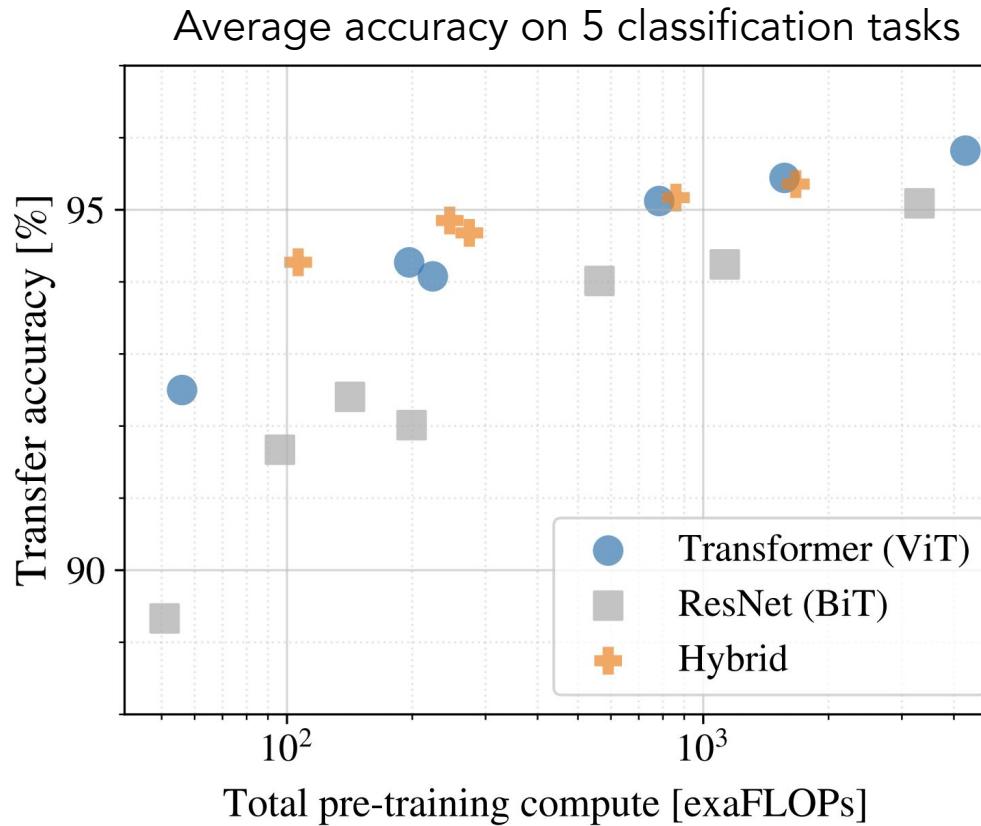
Let’s try applying a transformer to vision tasks instead of a ConvNet



Vision Transformers

Transformers scale better than ResNets with lots of compute

“Hybrids” even better for smaller amounts of compute



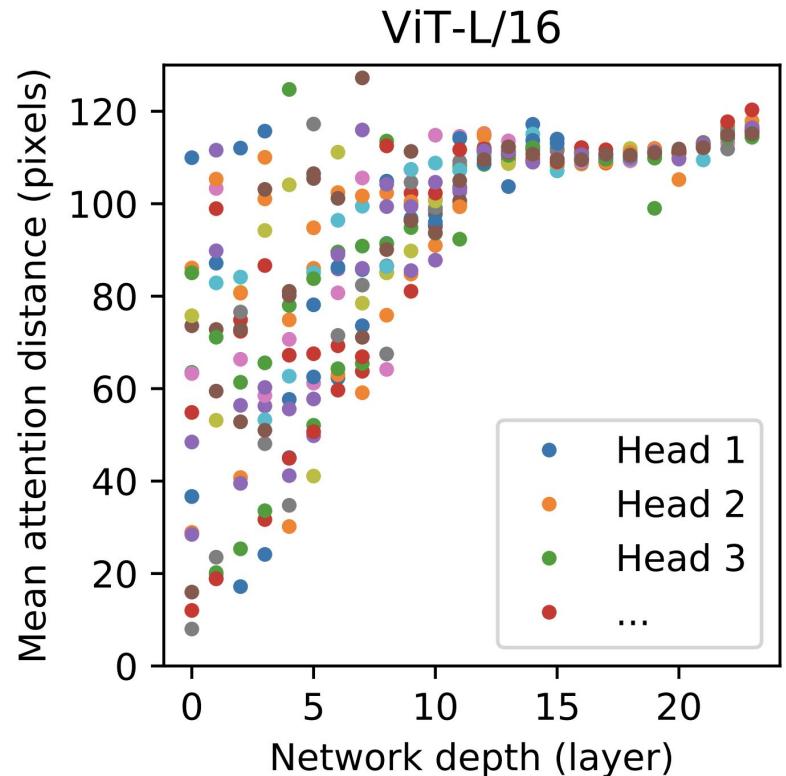
Vision Transformers

In early layers – both local and global attention heads

In latter layers – only global

While transformers themselves are “grid”-agnostic, the representation in ViTs is still “on the grid” (patches)

Distribution of “attention distance” over layers

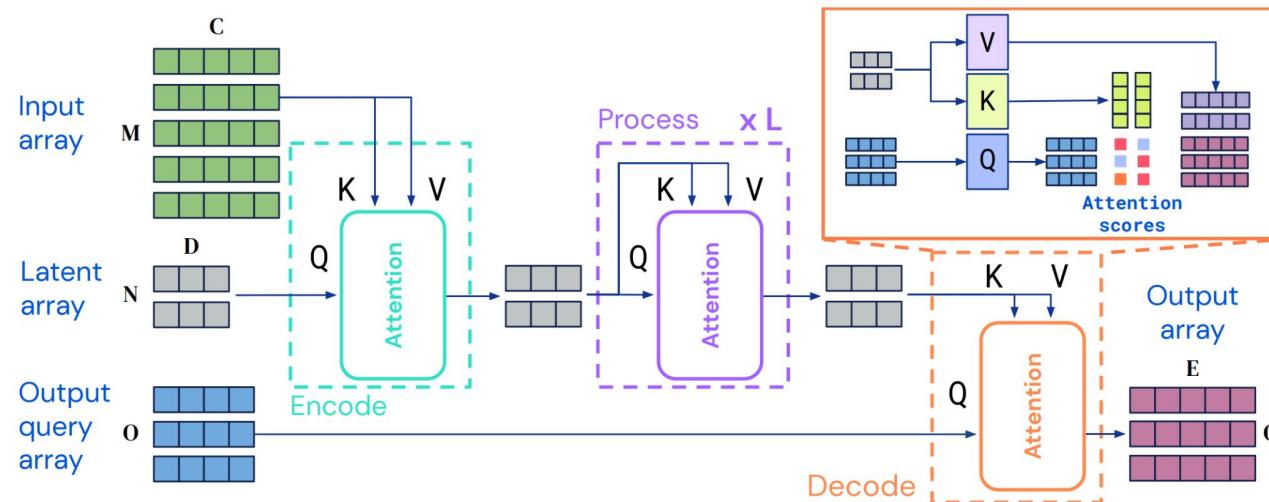


Honorable mention: Perceiver and Perceiver IO

“Off the grid” representation and processing

Works well on many vision tasks

Downside: worse in terms of the compute/performance tradeoff

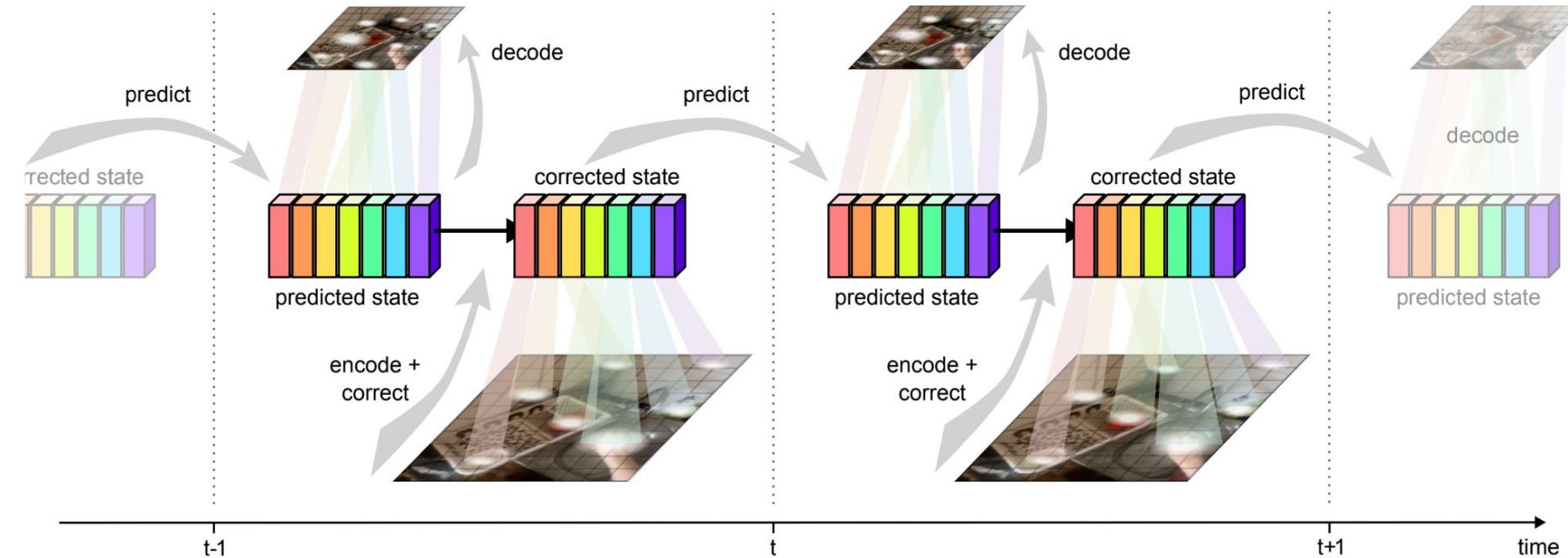


Jaegle et al., Perceiver: General Perception with Iterative Attention

Jaegle et al., Perceiver IO: A General Architecture for Structured Inputs & Outputs

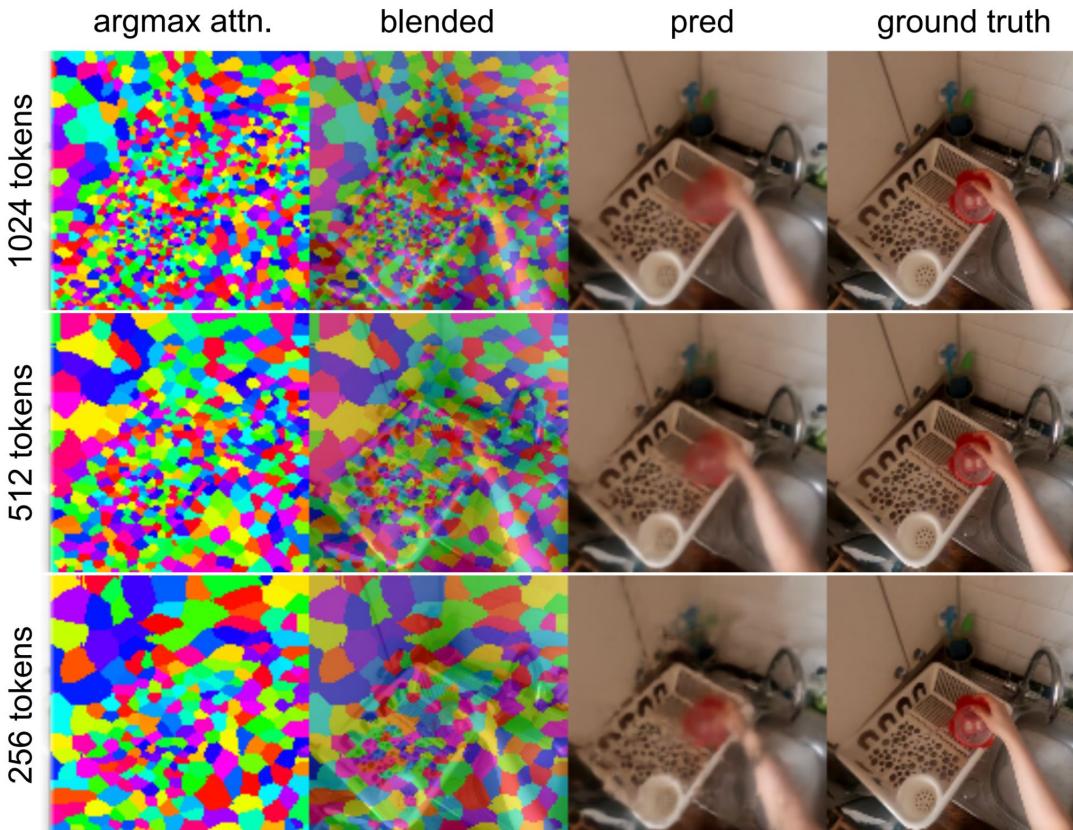
Take 3: MooG – Off-the-Grid for Video

Slot Attention meets Vision Transformers and goes video



MooG: Off-the-Grid for Video

Learns variable token size depending on the local complexity



MooG: Off-the-Grid for Video

Tokens are “off the grid” and rather connected to the scene!



MooG: Off-the-Grid for Video

Tokens are “off the grid” and rather connected to the scene!

MooG: Off-the-Grid for Video

Works pretty well on downstream tasks too

This is using frozen representation from the model

Note that MooG has 35M params, while VMAEv2 S/B/G – 20M/80M/1000M

Name	MOVi-E			DAVIS	
	Points (↑AJ)	Depth (↓AbsRel)	Boxes (↑IoU)	Points (↑AJ)	Boxes (↑IoU)
MooG	0.839	0.0359	0.793	0.687	0.730
Grid	0.769	0.0451	0.730	0.518	0.625
Grid Rec.	0.778	0.0443	0.734	0.559	0.629
DINOv1 (B)	0.518	0.0371	0.724	0.409	0.566
DINOv2 (B)	0.544	0.0370	0.738	0.402	0.559
VMAEv2 (S)	0.595	0.0567	0.700	0.365	0.567
VMAEv2 (B)	0.681	0.0458	0.736	0.434	0.611
VMAEv2 (G)	0.822	0.0311	0.793	0.720	0.708

Summary

	Off-the-grid representation	Off-the-grid processing	Scalable	Honorable mentions:
Slot Attention	yes	no	no	RIN (Jabri et al.)
Vision Transformer	no	yes	yes	FIT (Chen, Li) AdaTape, Registers
Perceiver (IO)	yes	yes	maybe	Gaussian Splatting GLOM (Hinton)
MooG	yes	yes	maybe	...

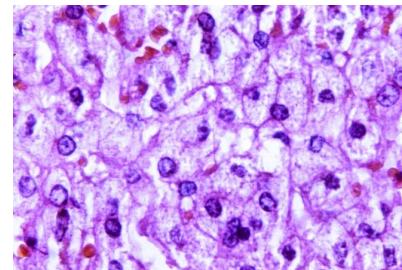
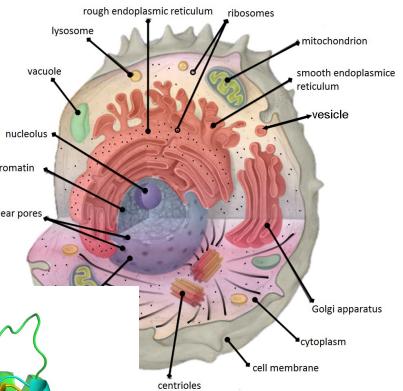
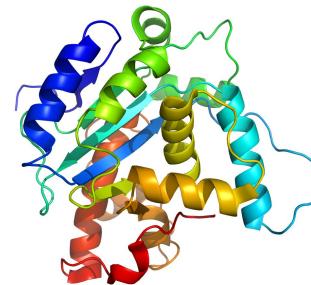
Good progress, but still no “bulletproof” scalable off-the-grid model

Difficult to imagine that transformers are “the ultimate architecture”

=> we need to keep trying!

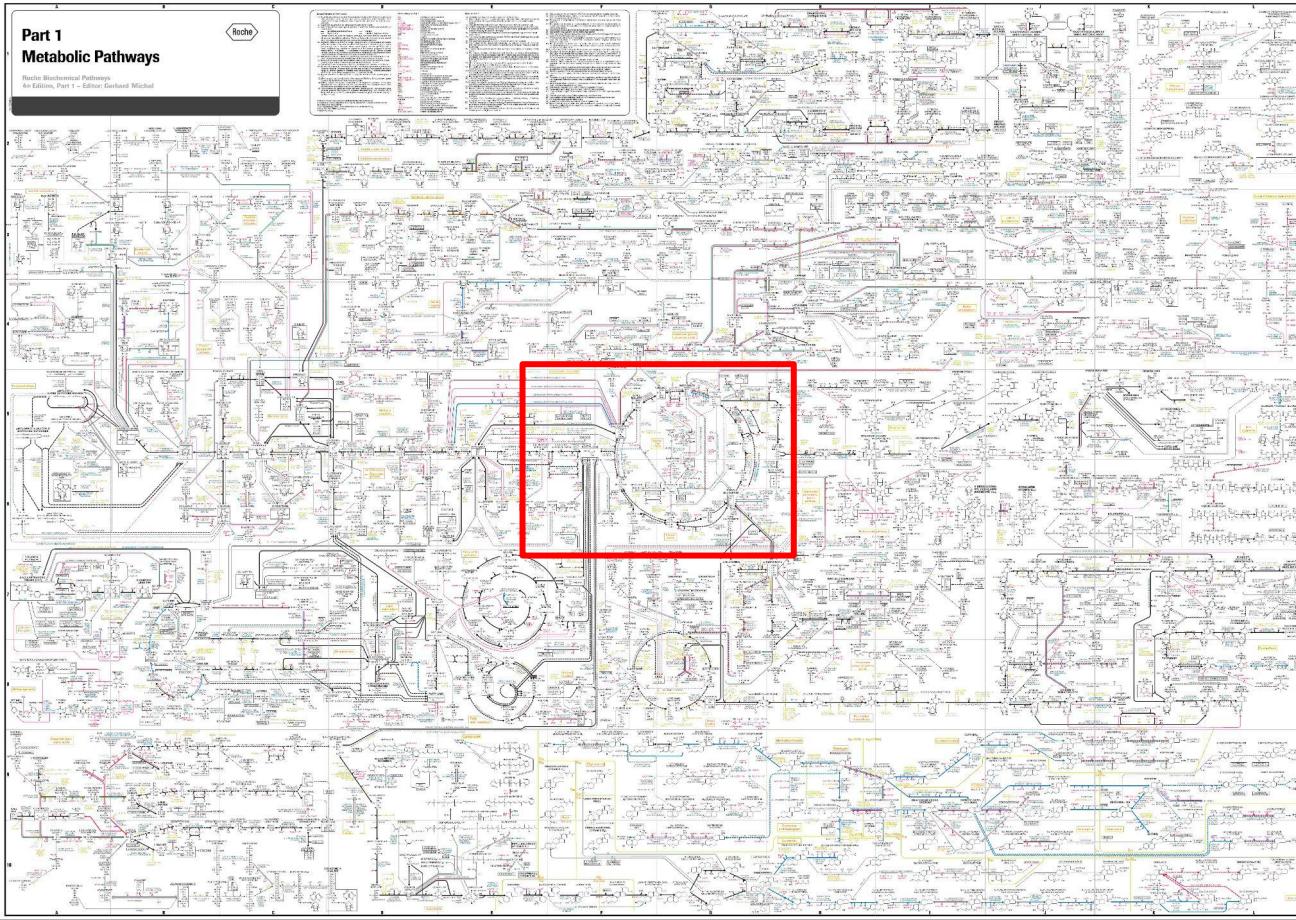
From Pixels

To Nucleotides

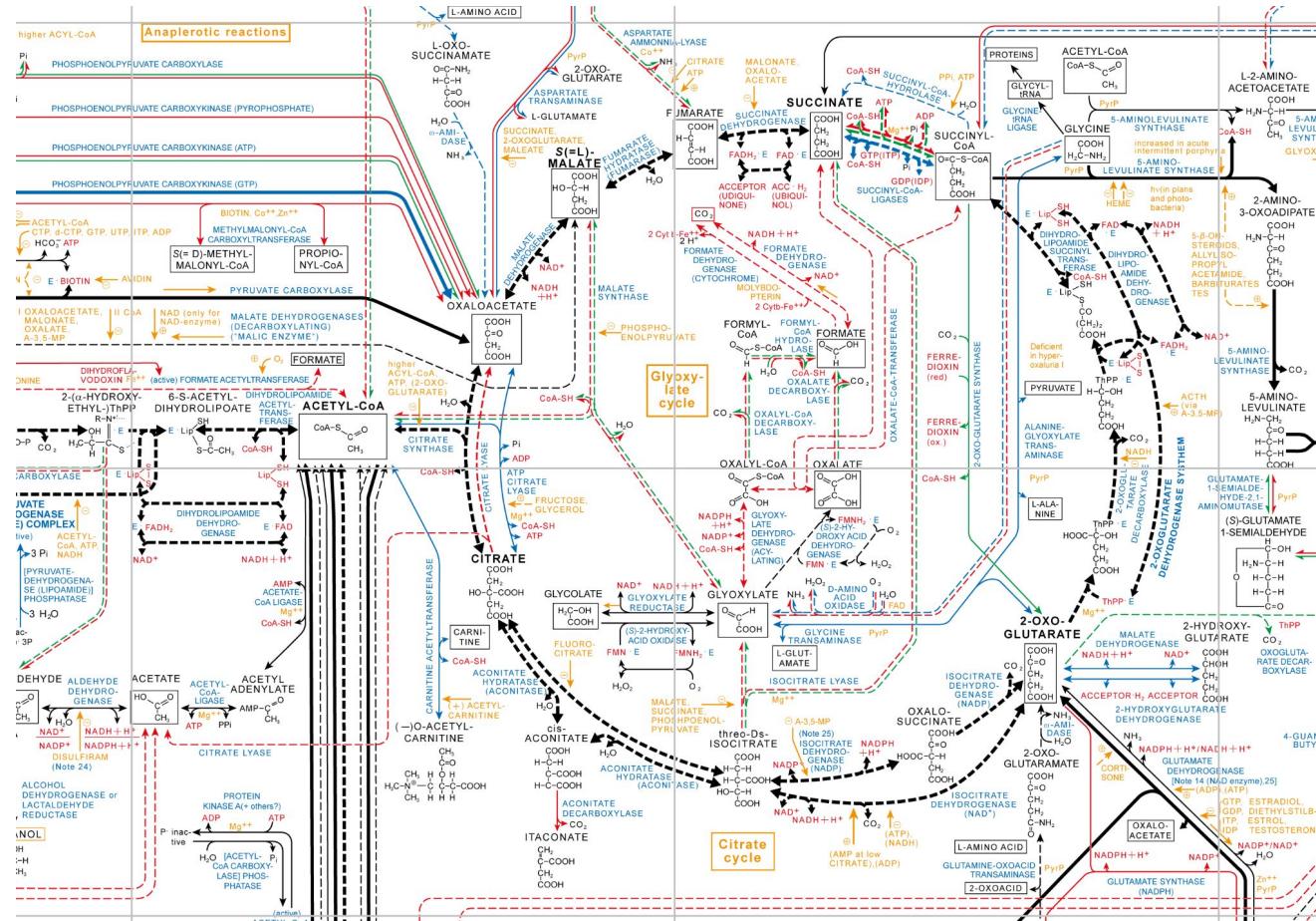


???

Biology is Complex

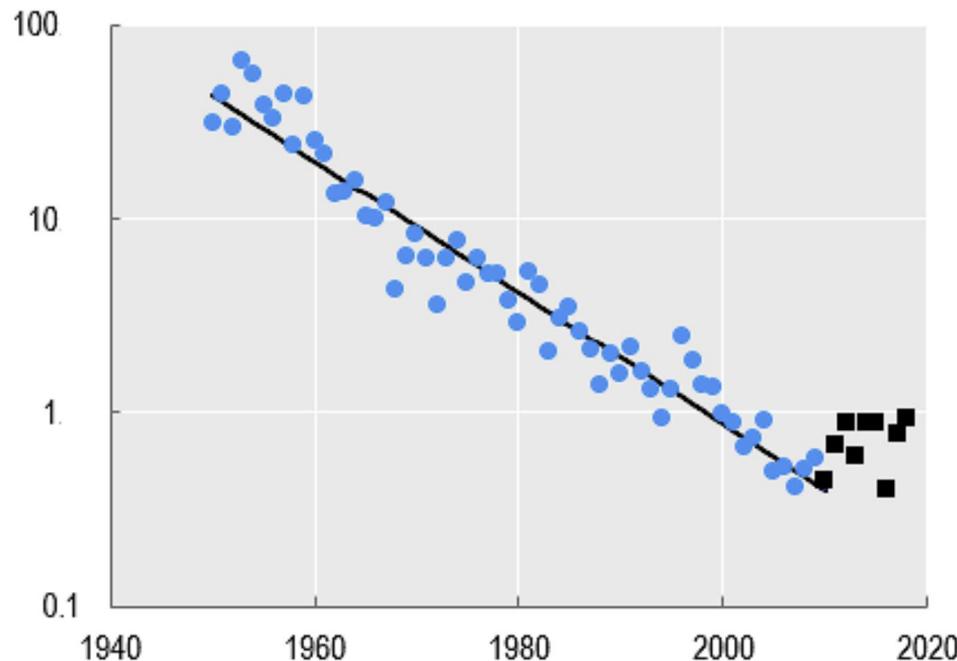


Biology is Very Complex



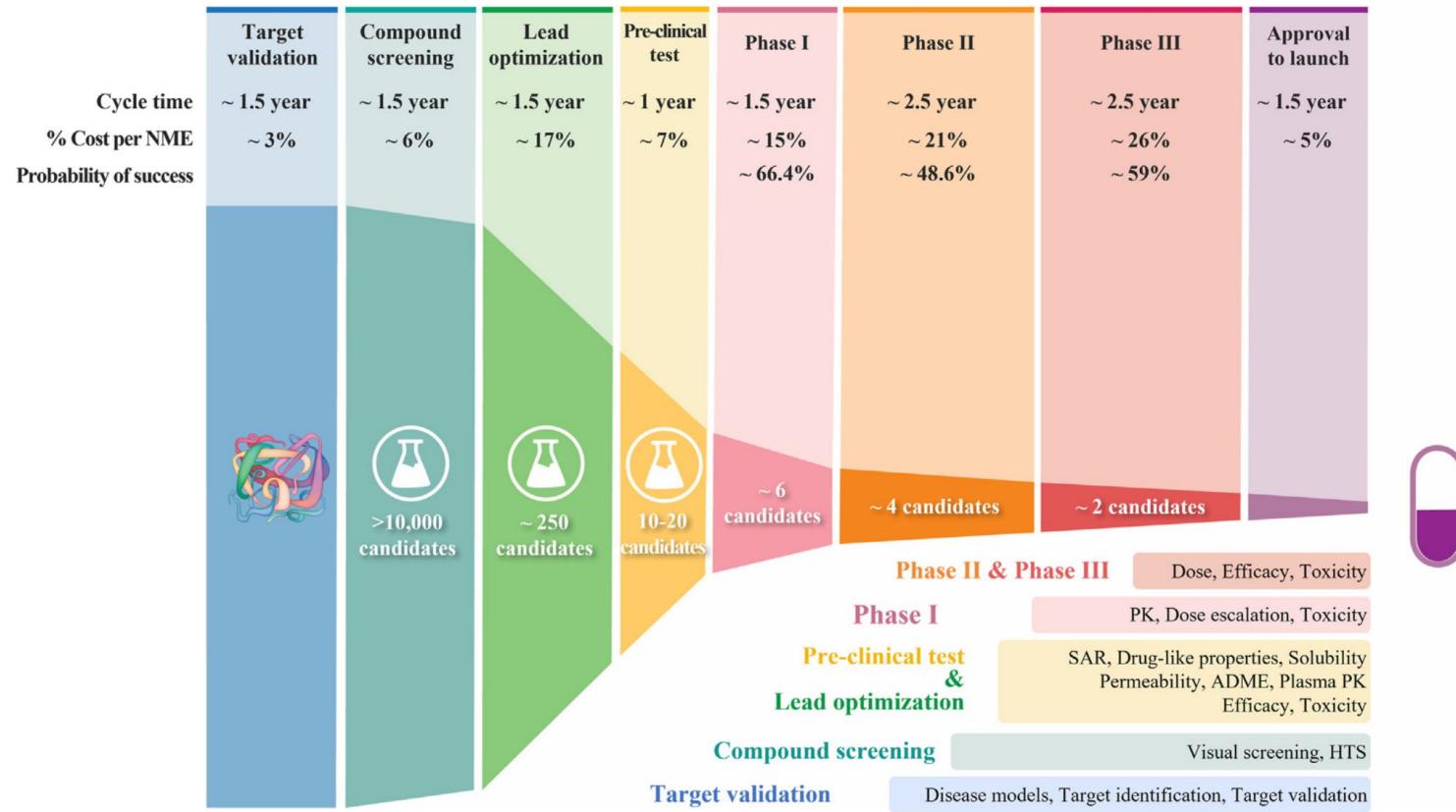
Eroom's law: Drug Development Gets More Expensive

A. New molecule entities and new biologics approved by the FDA per billion USD inflation-adjusted R&D investment, logarithmic vertical axis



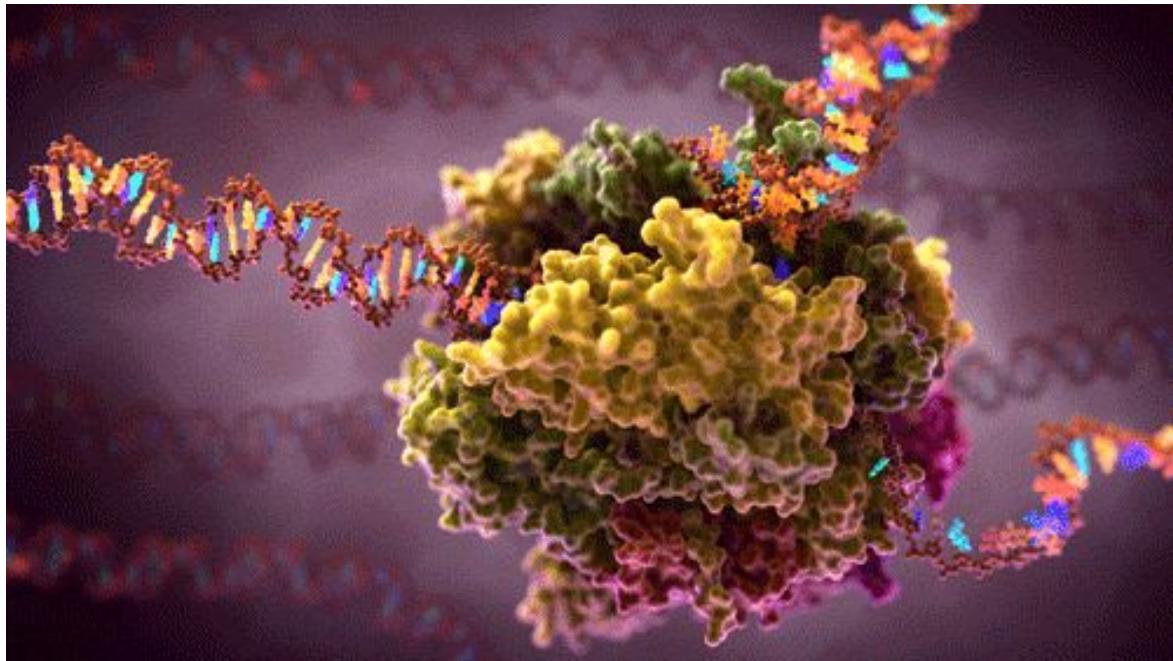
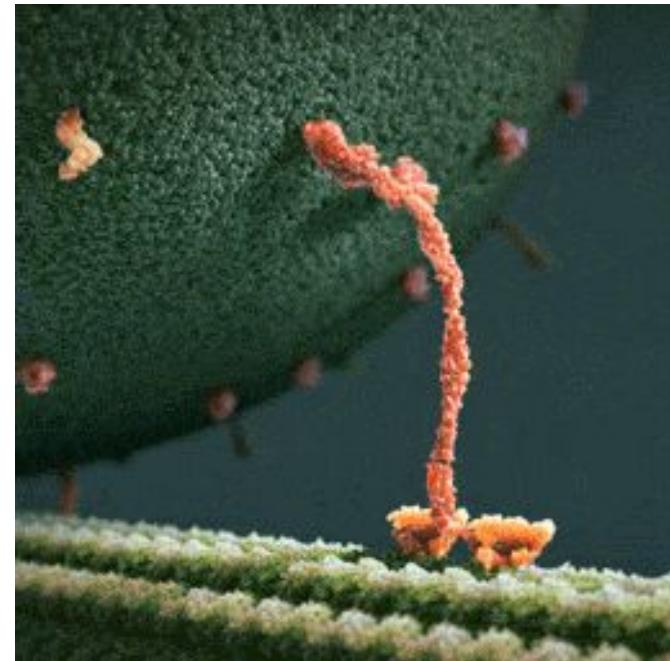
Scannell et al., Diagnosing the
decline in pharmaceutical R&D
efficiency
Scannell, Eroom's Law and the
decline in the productivity of
biopharmaceutical R&D

Why So Expensive? Funnel of Drug Development



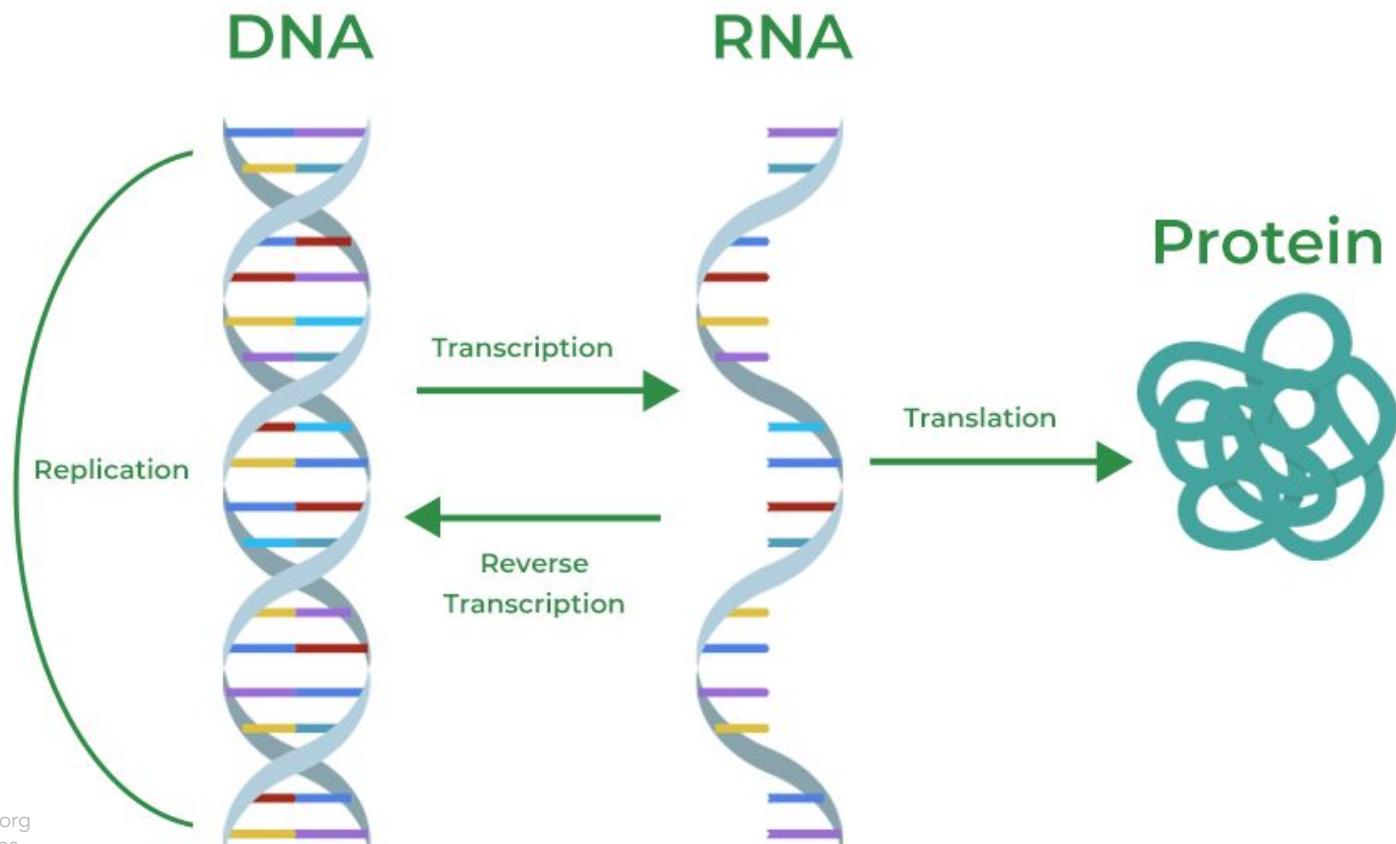
ML to the rescue?

Proteins* make living organisms tick

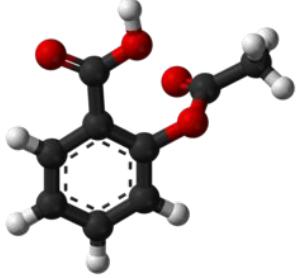


* There's increasing evidence that (non-coding) RNA etc are super important too

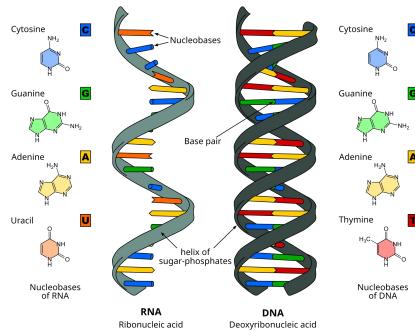
Central dogma of molecular biology



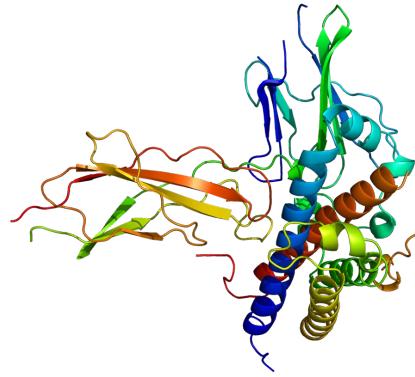
Drug Modalities



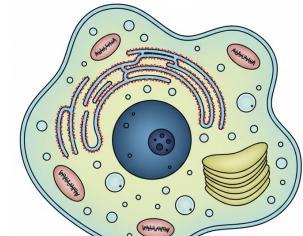
Small molecules



Nucleic acids



Proteins



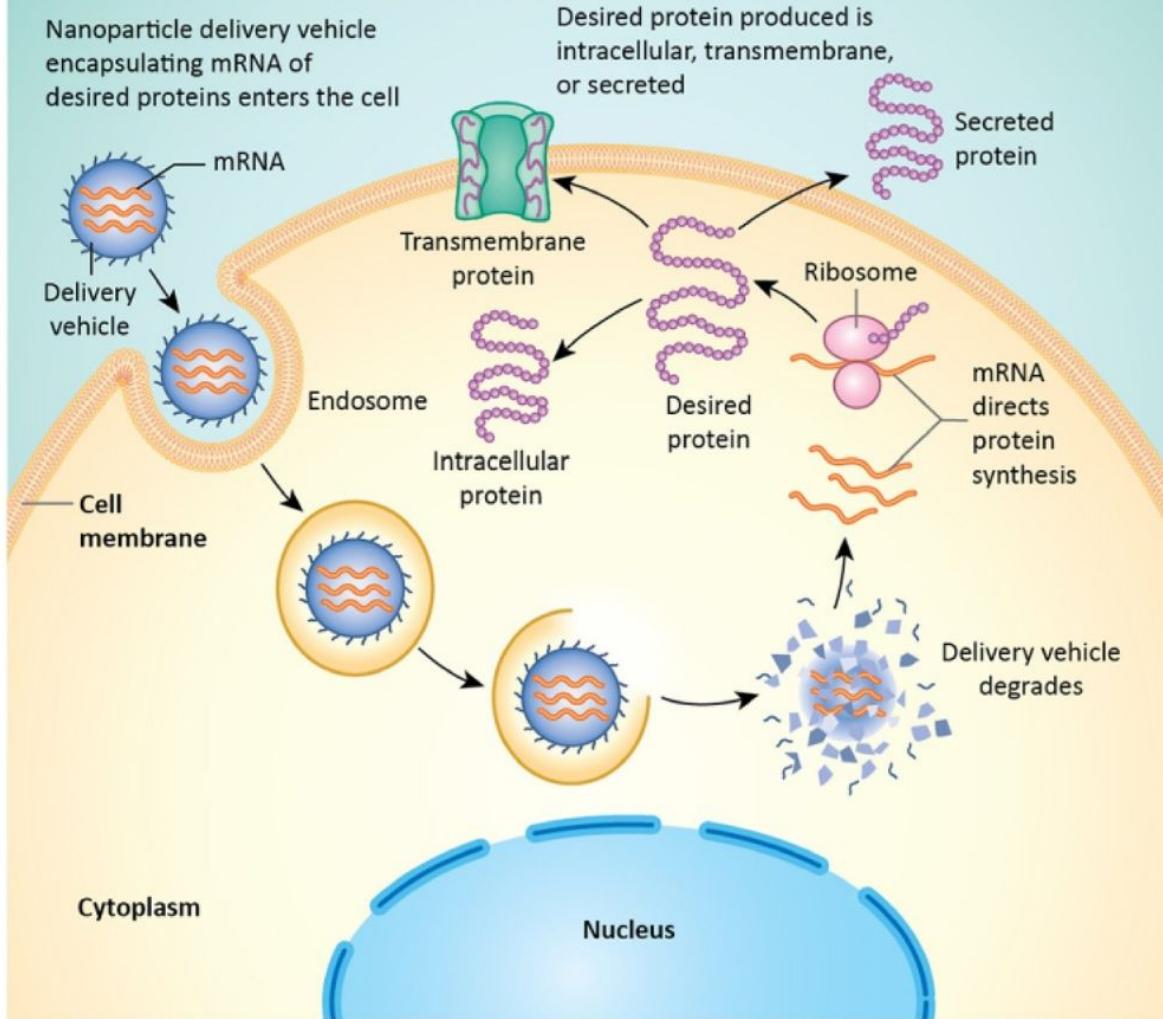
Cells

Biologics

mRNA drugs

Instead of putting proteins into the body, make body produce the proteins itself

Delivered usually in lipid nanoparticles (LNPs)

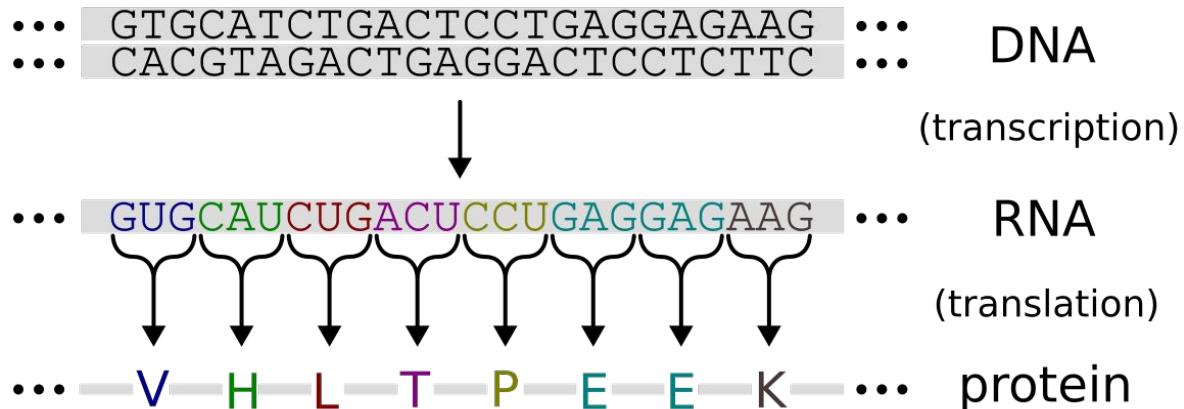
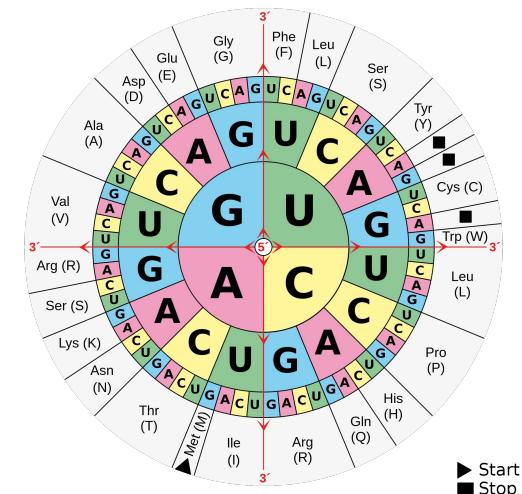


DNA/RNA code for proteins

DNA/RNA: 4 types of nucleotides

Protein: ~22 amino acids

Triplet of nucleotides: $4^3 = 64$ options

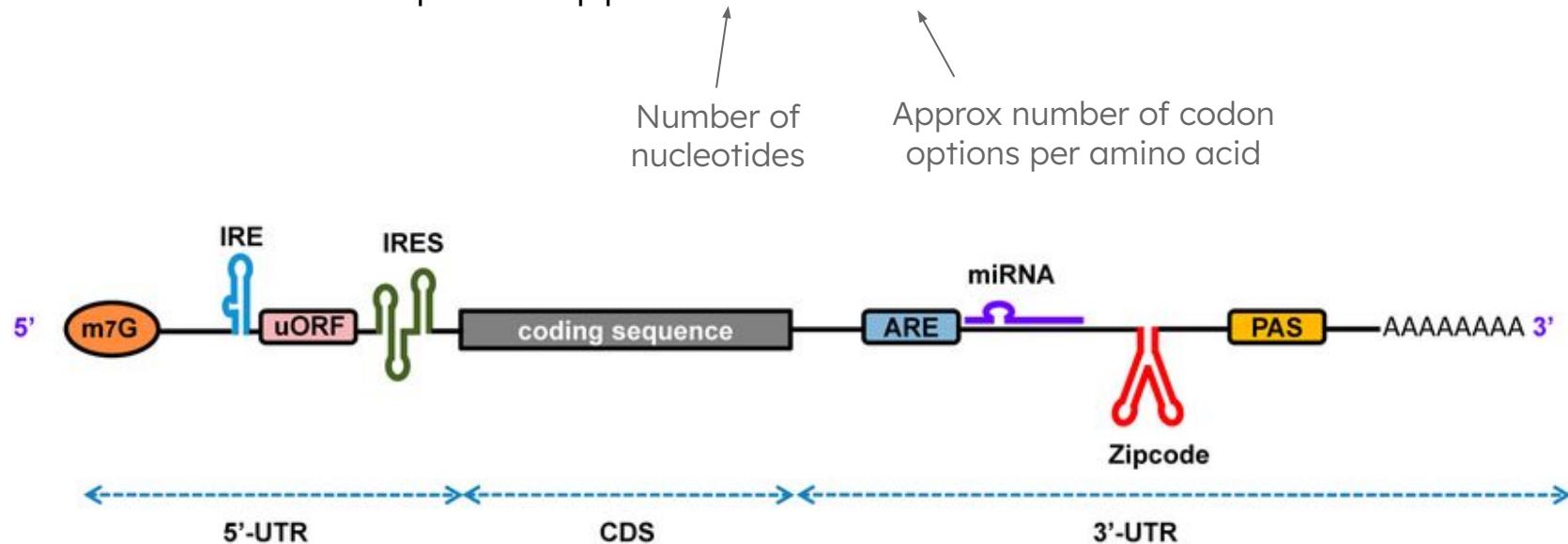


mRNA Design Problem Example: COVID Spike Protein

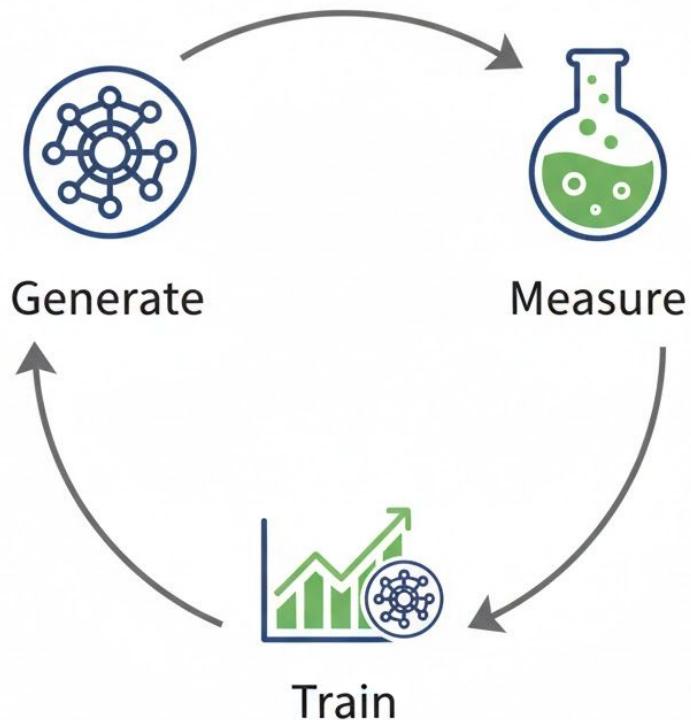
E.g. COVID spike protein: 1273 amino acids long

Untranslated regions: e.g. $150 + 350 = 500$ nucleotides

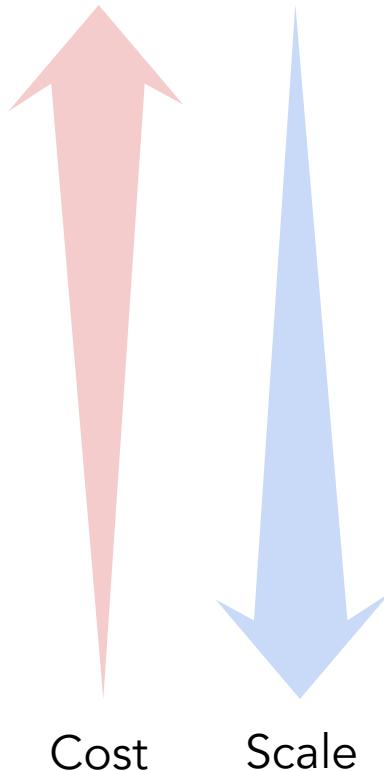
=> total number of options approx: $4^{500} * 3^{1273} = *a \text{ lot}*$



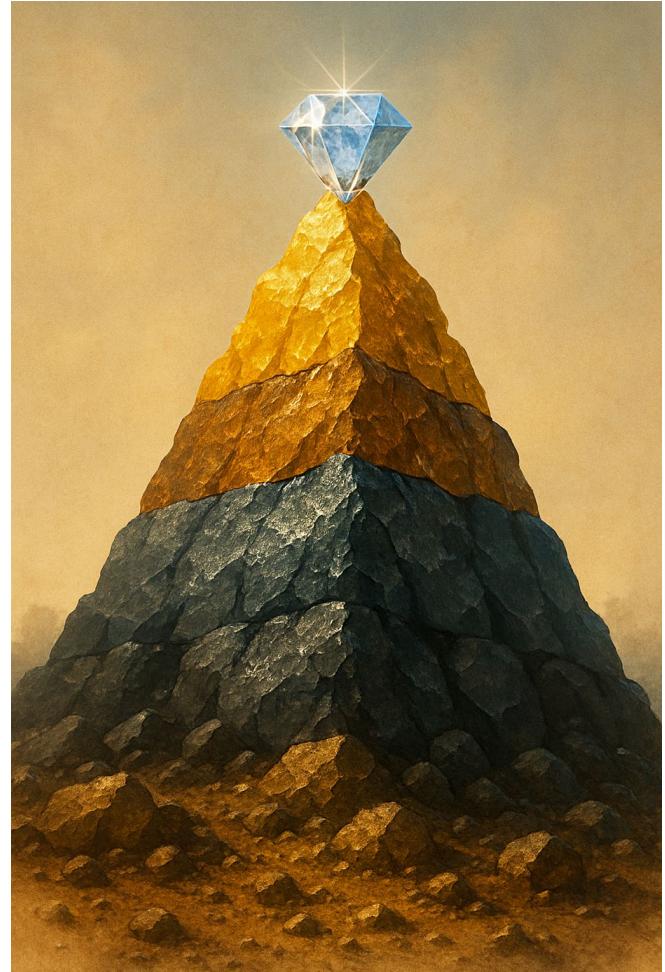
How do we solve it? “Lab in the Loop”



Challenge: Evaluation



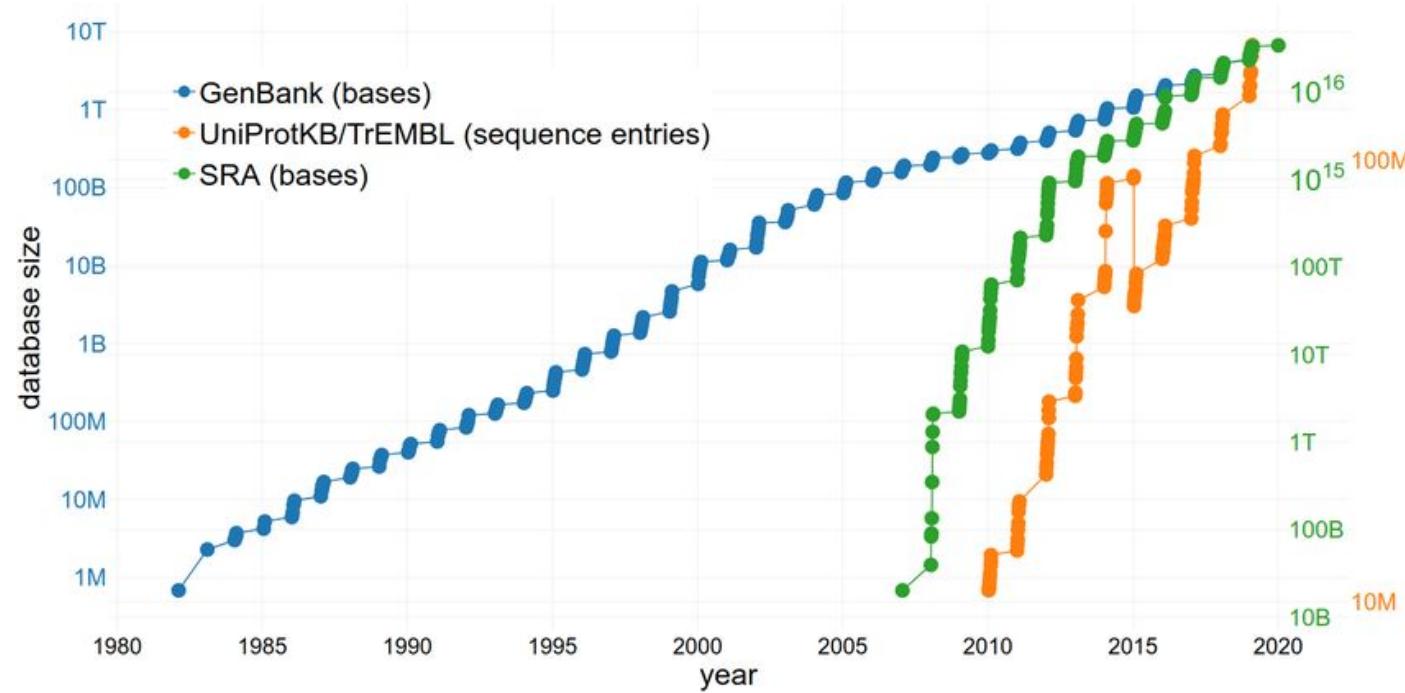
- Clinical trials
- In-vivo non-human primates
- In-vivo mice
- In-vitro (cells) arrayed
- In-vitro (cells) pooled
- In-silico (computational)



Challenge: Training data

Lots of publicly available genomic data (DNA, RNA, sequencing, proteins)

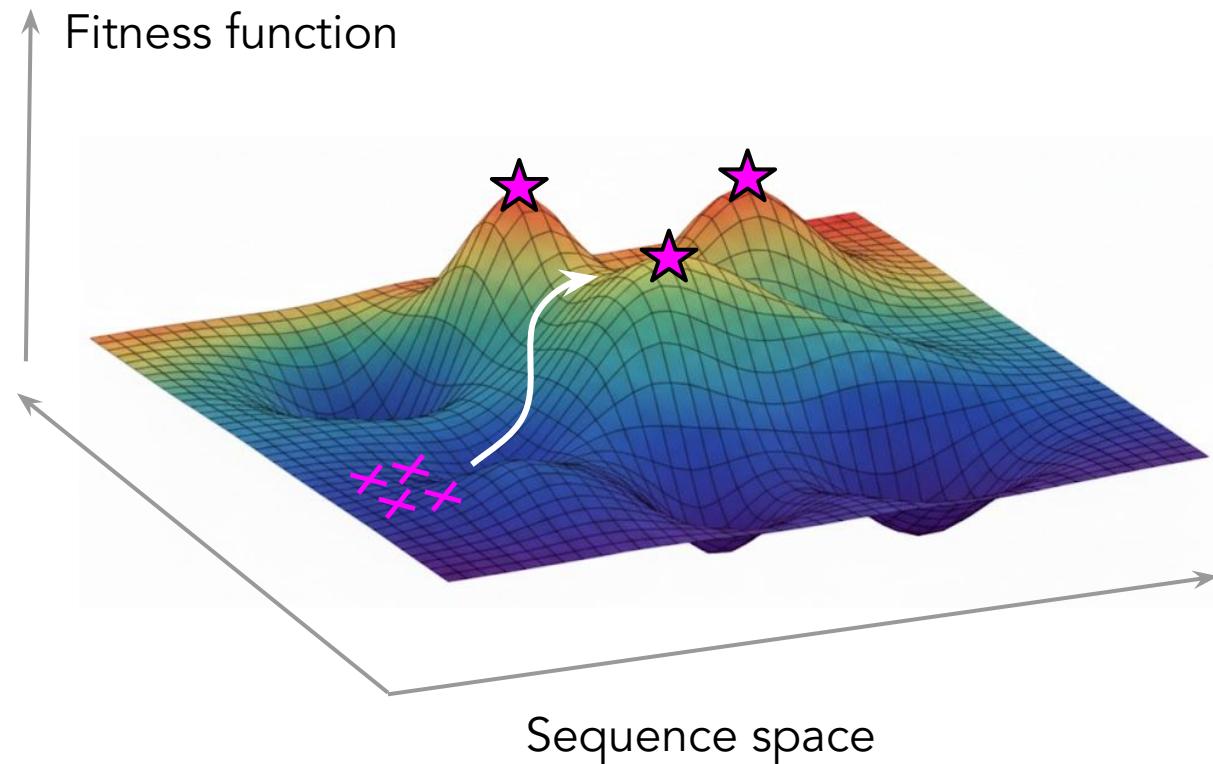
But fairly little, and scattered, measurements speaking to the properties



Challenge: Extrapolation, exploration

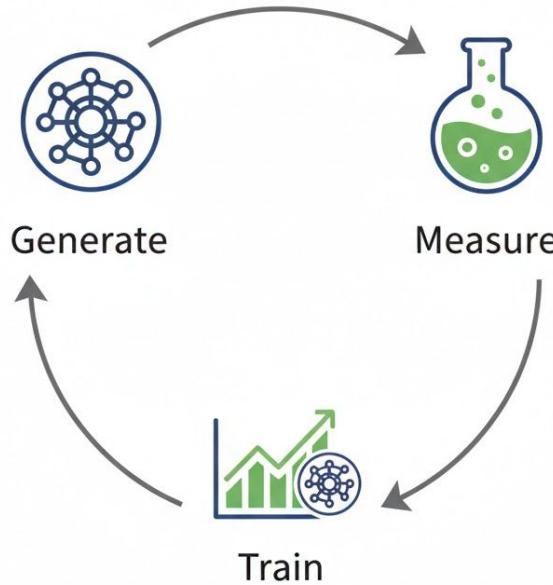
Extrapolation: at each lab-in-the-loop iteration, want to get sequences better than best measured so far

Exploration: want to find the best performing sequences in a huge search space



Lab in the Loop Revisited

Smart design strategies
trading off exploration
and exploitation



New scalable assays
and smart use of
different “tiers” of
data, including
in-silico

Generative models supporting extrapolation, low-data regimes,
multi-objective optimization

Large-scale pre-training on genomic data and beyond

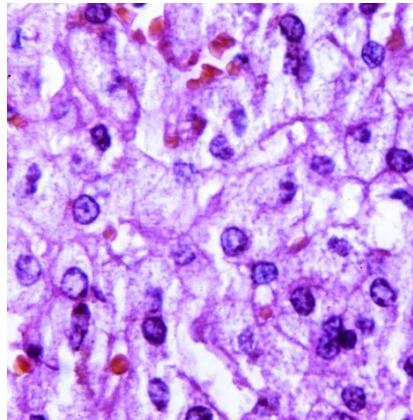
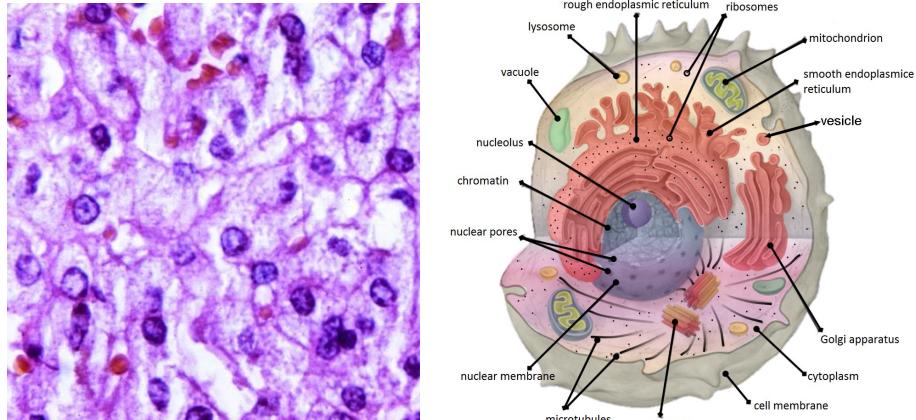
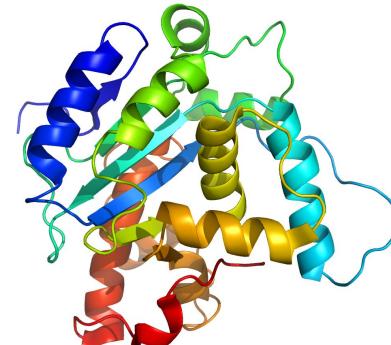
Summary

Biology is extremely complex and “messy”

That's exactly the type of problem ML is good at

Which is great since drug development needs help

Lots of interesting and difficult challenges



Computer vision is still not
“solved” – exciting
challenges!

Loads of room for innovation
and impact in using ML for
biology and medicine

