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Digital Images Live “On The Grid” of the Camera Sensor

https://www.youtube.com/shorts/vOcqoLGX2jI



We naturally see the world as it is – 3D and dynamic

How do we make computer vision systems that do too?



Why “off the grid”?

Efficiency!

The right inductive bias 
for vision

Especially for video

https://www.youtube.com/shorts/vOcqoLGX2jI



Aside: 3D Reconstruction

A large successful field, but not deep-learning-native
Image from Furukawa & Hernández



ConvNets Operate on the Grid

https://commons.wikimedia.org/wiki/File:Typical_cnn.png

How do we take them “off the grid”?



Take 1: Slot Attention

Task: map feature maps of a 
convolutional model to a set

Approach: Iterative “transposed” 
attention of K “slots” over the feature 
maps (~learned soft k-means)

Locatello et al., Object-Centric Learning with Slot Attention

Applications: unsupervised 
object discovery, set 
prediction



Slot Attention

Works well on simple synthetic tasks

But does not scale to the real world

Locatello et al., Object-Centric Learning with Slot Attention

How do we make a scalable “off-the-grid” model?



Take 2: Vision Transformers

ConvNets operate “on the 
grid” – local 2D processing

What operates “off the 
grid”? Transformers!

Let’s try applying a 
transformer to vision tasks 
instead of a ConvNet

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale



Vision Transformers

Transformers scale better 
than ResNets with lots of 
compute

“Hybrids” even better for 
smaller amounts of compute

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Average accuracy on 5 classification tasks



Vision Transformers

In early layers – both local and 
global attention heads

In latter layers – only global

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Distribution of “attention distance” over layers

While transformers themselves are 
“grid”-agnostic, the representation in 
ViTs is still “on the grid” (patches)



Honorable mention: Perceiver and Perceiver IO

“Off the grid” representation and processing

Works well on many vision tasks

Downside: worse in terms of the compute/performance tradeoff

Jaegle et al., Perceiver: General 
Perception with Iterative Attention

Jaegle et al., Perceiver IO: A 
General Architecture for Structured 
Inputs & Outputs



Take 3: MooG – Off-the-Grid for Video

Slot Attention meets Vision Transformers and goes video

Steenkiste et al., Moving Off-the-Grid: Scene-Grounded Video Representations



MooG: Off-the-Grid for Video

Steenkiste et al., Moving Off-the-Grid: Scene-Grounded Video Representations

Learns variable token 
size depending on 
the local complexity



MooG: Off-the-Grid for Video

Steenkiste et al., Moving Off-the-Grid: Scene-Grounded Video Representations

Tokens are “off the grid” and rather connected to the scene! 
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MooG: Off-the-Grid for Video

Steenkiste et al., Moving Off-the-Grid: Scene-Grounded Video Representations

Works pretty well on downstream tasks too

This is using frozen representation from the model

Note that MooG has 35M params, while VMAEv2 S/B/G – 20M/80M/1000M



Summary

Good progress, but still no “bulletproof” scalable off-the-grid model

Difficult to imagine that transformers are “the ultimate architecture”

=> we need to keep trying!

Off-the-grid 
representation

Off-the-grid 
processing Scalable

Slot Attention yes no no

Vision Transformer no yes yes

Perceiver (IO) yes yes maybe

MooG yes yes maybe

Honorable mentions:

RIN (Jabri et al.)
FIT (Chen, Li)
AdaTape, Registers
Gaussian Splatting
GLOM (Hinton)
…



From Pixels                

???

To Nucleotides



Biology is Complex

Michal et 
al., Roche, 
“Metabolic 
Pathways” 



Biology is Very Complex

Michal et 
al., Roche, 
“Metabolic 
Pathways” 



Eroom’s law: Drug Development Gets More Expensive

Scannell et al., Diagnosing the 
decline in pharmaceutical R&D 
efficiency
Scannell, Eroom’s Law and the 
decline in the productivity of 
biopharmaceutical R&D



Why So Expensive? Funnel of Drug Development

Sun et al., Why 90% of clinical drug development fails and how to improve it?



ML to the rescue?



Proteins* make living organisms tick 

* There’s increasing evidence that (non-coding) RNA etc are super important too



Central dogma of molecular biology

https://www.geeksforgeeks.org
/biology/central-dogma-steps-
guide/



Drug Modalities

Images from https://commons.wikimedia.org/

Small molecules Nucleic acids Proteins Cells

Biologics



mRNA drugs

Instead of putting proteins 
into the body, make body 
produce the proteins itself

Delivered usually in lipid 
nanoparticles (LNPs)

Bhat et al., mRNA therapeutics: beyond vaccine applications



DNA/RNA code for proteins

DNA/RNA: 4 types of nucleotides

Protein: ~22 amino acids

Triplet of nucleotides: 4^3 = 64 options

https://en.wikipedia.org/wiki/DNA_and_RNA_codon_tables#/media/File:Aminoacids_table.svg
https://commons.wikimedia.org/wiki/File:Genetic_code.svg



mRNA Design Problem Example: COVID Spike Protein
E.g. COVID spike protein: 1273 amino acids long

Untranslated regions: e.g. 150 + 350 = 500 nucleotides

=> total number of options approx: 4^500 * 3^1273 = *a lot*

Number of 
nucleotides

Approx number of codon 
options per amino acid

Ahmed et al., Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives



How do we solve it? “Lab in the Loop”



Challenge: Evaluation

Clinical trials

In-vivo non-human primates

In-vivo mice

In-vitro (cells) arrayed

In-vitro (cells) pooled

In-silico (computational)

Cost Scale



Challenge: Training data

Lots of publicly available genomic data (DNA, RNA, sequencing, proteins)

But fairly little, and scattered, measurements speaking to the properties 

Sielemann et al., The 
Reuse of Public Datasets 
in the Life Sciences: 
Potential Risks and 
Rewards



Challenge: Extrapolation, exploration

Extrapolation: at each 
lab-in-the-loop 
iteration, want to get 
sequences better than 
best measured so far

Exploration: want to 
find the best 
performing sequences 
in a huge search space

Sequence space

Fitness function



Lab in the Loop Revisited

Smart design strategies 
trading off exploration 
and exploitation

New scalable assays 
and smart use of 
different “tiers” of 
data, including 
in-silico

Generative models supporting extrapolation, low-data regimes, 
multi-objective optimization

Large-scale pre-training on genomic data and beyond



Summary

Biology is extremely complex and 
“messy”

That’s exactly the type of problem ML 
is good at

Which is great since drug 
development needs help

Lots of interesting and difficult 
challenges



Computer vision is still not 
“solved” – exciting 
challenges!

Loads of room for innovation 
and impact in using ML for 
biology and medicine


