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Computer vision
and "off-the-grid”

This talk
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The World
is 3D and
Dynamic
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Digital Images Live “On The Grid” of the Camera Sensor
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We naturally see the world as it is — 3D and dynamic

How do we make computer vision systems that do too?



Why “off the grid”?

Efficiency!

The right inductive bias
for vision

Especially for video




Aside: 3D Reconstruction

A large successful field, but not deep-learning-native



ConvNets Operate on the Grid

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

How do we take them “off the grid”?

https://commons.wikimedia.org/wiki/File: Typical_cnn.png



Take 1: Slot Attention

SLOT ATTENTION

Task: map feature maps of a

convolutional model to a set
k, v ATTENTION:

SLOTS COMPETE

Approach: Iterative “transposed” FORINPUTKEYS

attention of K “slots” over the feature
maps (~learned soft k-means)

Applications: unsupervised
object discovery, set

1cti FEATURE MAPS
predICtlon + POSITION EMB.

\J

\J

\4

\/




Slot Attention

Works well on simple synthetic tasks

But does not scale to the real world

Image Recon. Mask Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

How do we make a scalable “off-the-grid” model?



Take 2: Vision Transformers

MLP \
Head

ConvNets operate “on the

grid” — local 2D processing

What oper ates “off the Transformer Encoder
grid”? Transformers!
Patch + Position
Let's t Ivi Embeddi;é > @ . . .' .' . . g
ets ry app ylng a * Extra learnable
transformer to vision tasks [class] embedding [ Linear Projection of Flattened Patches

instead of a ConvNet

RN |




Vision Transformers

Average accuracy on 5 classification tasks

Transformers scale better — 95
) IS
than ResNets with lots of = ,
Q
compute &
3
Q
) <
“Hybrids” even better for ks
n
maller amounts of compute =
smaller amounts ot comp E 3 Transformer (ViT)
ResNet (BiT)
Hybrid
2103

Total pre-training compute [exaFLOPs]



Vision Transformers

Distribution of “attention distance” over layers
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Honorable mention: Perceiver and Perceiver 1O

"Off the grid” representation and processing
Works well on many vision tasks

Downside: worse in terms of the compute/performance tradeoft
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Take 3: MooG - Off-the-Grid for Video

Slot Attention meets Vision Transformers and goes video

predict predict

Tected state corrected state

predicted state

encode +
correct

corrected state

predict :

predicted state

encode +
correct

-
A
L N -

decode

predicted state

t-1

T
t+1

time



MooG: Off-the-Grid for Video

argmax attn. blended pred ground truth

1024 tokens

Learns variable token
size depending on
the local complexity

512 tokens

256 tokens




MooG: Off-the-Grid for Video

Tokens are “off the grid” and rather connected to the scene!




MooG: Off-the-Grid for Video

Tokens are “off the grid” and rather connected to the scene!




MooG: Off-the-Grid for Video

Works pretty well on downstream tasks too

This is using frozen representation from the model

Note that MooG has 35M params, while VMAEv2 S/B/G — 20M/80M/1000M

MOVi-E DAVIS Waymo

Name Points (TAJ) Depth (JAbsRel) Boxes (1IoU) Points (TAJ) Boxes (1IoU)
MooG 0.839 0.0359 0.793 0.687 0.730
Grid 0.769 0.0451 0.730 0.518 0.625
Grid Rec. 0.778 0.0443 0.734 0.559 0.629
DINOv1 (B) 0.518 0.0371 0.724 0.409 0.566
DINOvV2 (B) 0.544 0.0370 0.738 0.402 0.559
VMAEV2 (S) 0.595 0.0567 0.700 0.365 0.567
VMAEV2 (B) 0.681 0.0458 0.736 0.434 0.611

VMAEV2 (G) 0.822 0.0311 0.793 0.720 0.708



Summary

Off-the-grid

representation
Slot Attention
Vision Transformer no
Perceiver (10O)

MooG

Off-the-grid

processing

no

Scalable

no

Honorable mentions:

RIN
FIT
AdaTape, Registers

Gaussian Splatting
GLOM

Good progress, but still no “bulletproof” scalable off-the-grid model

Difficult to imagine that transformers are “the ultimate architecture”

=> we need to keep trying!



From Pixels To Nucleotides

rough endoplasmic reticulum  ribosomes




Biology is Complex

Part 1
Metabolic Pathways

Michal et

al., Roche,
“Metabolic
Pathways”




Biology is Very Complex
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Eroom’s law: Drug Development Gets More Expensive

A. New molecule entities and new biologics approved by the FDA
per billion USD inflation-adjusted R&D investment, logarithmic vertical axis
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Why So Expensive? Funnel of Drug Development

Target
validation
Cycle time  ~ 1.5 year
% Cost per NME ~3%
Probability of success

Compound Lead
screening  optimization
~ 1.5 year ~ 1.5 year
~6% ~17%

>10,000
candidates

candidates

Sun et al., Why 90% of clinical drug development fails and how to improve it?

L Phase I Phase 11
test
~1year ~1.5year ~2.5 year
~T7% ~15% ~21%
~66.4% ~48.6%

Phase 111 Approval
to launch
~2.5 year ~ 1.5 year
~26% ~5%
~59%

~6

candidates’

Phase 1

Pre-clinical test

Lead optimization
Compound screening

Target validation

Phase 11 & Phase 111

Dose, Efficacy, Toxicity

PK, Dose escalation, Toxicity
SAR, Drug-like properties, Solubility
Permeability, ADME, Plasma PK
Efficacy, Toxicity

Visual screening, HTS

Disease models, Target identification, Target validation



ML to the rescue?



Proteins* make living organisms tick

* There's increasing evidence that (non-coding) RNA etc are super important too



Central dogma of molecular biology

DN

>

RNA

Protein

Transcription

>

Translation

>

Replication

<

Reverse
Transcription

MMM

o D i ]

https://www.geeksforgeeks.org
/biology/central-dogma-steps-
guide/



Drug Modalities
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RNA
Ribonucleic acid Deoxyribonucleic acid

Small molecules Nucleic acids Proteins Cells

Biologics



mRNA drugs

Instead of putting proteins
into the body, make body
produce the proteins itself

Delivered usually in lipid
nanoparticles (LNPs)

Desired protein produced is

Nanoparticle delivery vehicle h
intracellular, transmembrane,

encapsulating mRNA of

desired proteins enters the cell or secreted
Secreted
mRNA \ / protein
Transmembrane o
Belivery \ protein " ‘\Ribosome
vehicle / Sooo% Joog \g
KT e MRNA
Endosome Desired } directs
protein N protein
Intracellular \fj\,: synthesis

= cell \4//_\\ protein
membrane / \\

>
\ &

—\2 %
# { .)'

/ <
" £ ’ WA, Deli hicl
) — [ w » Delivery vehicle
7 \ \( . SR, - degrades
\ / i s
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DNA/RNA code for proteins

DNA/RNA: 4 types of nucleotides
Protein: ~22 amino acids

Triplet of nucleotides: 473 = 64 options

eee GTGCATCTGACTCCTGAGGAGAAG e-- DNA
eee CACGTAGACTGAGGACTCCTCTTC see»

l (transcription)

eee GUGCAUCUGACUCCUGAGGAGAAG e RNA

?TTTTTTT (translation)

L EE s« protein




MRNA Design Problem Example: COVID Spike Protein
E.g. COVID spike protein: 1273 amino acids long

Untranslated regions: e.g. 150 + 350 = 500 nucleotides

=> total number of options approx: 47500 * 371273 = *a lot*

/ \

Number of Approx number of codon
nucleotides options per amino acid
IRE IRES
miRNA
5 @ | UORF | coding sequence ARE J=fi=—— ;: ((PAS J—AAAAAAAA 3
Zipcode
e > LT



How do we solve it? “Lab in the Loop”

@& &

Generate Measure

AT

Train



Challenge: Evaluation

Clinical trials

In-vivo non-human primates
In-vivo mice

In-vitro (cells) arrayed
In-vitro (cells) pooled

In-silico (computational)

Cost Scale




Challenge: Training data

Lots of publicly available genomic data (DNA, RNA, sequencing, proteins)

But fairly little, and scattered, measurements speaking to the properties

10T

L ]
* GenBank (bases) r’il l 10'®
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Challenge: Extrapolation, exploration

Extrapolation: at each ' Fitness function
lab-in-the-loop
iteration, want to get
sequences better than
best measured so far

Exploration: want to
find the best
performing sequences

in a huge search space /

Sequence space




Lab in the Loop Revisited

Smart design strategies g T e New scalable assays

trading off exploration @ and smart use of
and exploitation

different “tiers” of
Generate Measure in-silico

data, including

Train

Generative models supporting extrapolation, low-data regimes,
multi-objective optimization

Large-scale pre-training on genomic data and beyond



Summary

Biology is extremely complex and
Ilmessyll

That's exactly the type of problem ML
is good at

Which is great since drug
development needs help

Lots of interesting and difficult
challenges




Computer vision is still not
“solved” — exciting
challenges!

Loads of room for innovation
and impact in using ML for
biology and medicine




