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Challenges for Al assistants

Wikipedia / University of Toronto (CC BY-SA 4.0)

Wikipedia / Milo$ Ktivan (CCO0)

Flickr/kecko (CC BY 2.0)
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What makes these tasks hard?
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What makes these tasks hard?

Data availability

pxhere.com /
mohamed hassan (CCO0)
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What makes these tasks hard?

Data availability

Instruction following

pxhere.com / Wikipedia / Ocarina188 (CC BY-SA 4.0)

mohamed hassan (CCO0)
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What makes these tasks hard?

Data availability

Instruction following

pxhere.com /
mohamed hassan (CCO0)

Flicker / Tengrain
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What makes these tasks hard

Data availability
« Often small datasets for each specific task

« LLM / VLM pre-training targets text/visual
domains and non-specialists tasks

« Current (deep) RL needs much more data

pxhere.com /
mohamed hassan (CCO)
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What makes these tasks hard

Instruction following

. Capable artificial agents should be able K
to reach different goals, under different
preferences and constraints, each time

* Instructions usually more abstract than
direct sensory-motor signals

LLMs/VLMs are strong at instruction following
(Deep) RL methods usually don’t take complex instructions
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What makes these tasks hard

Explicit reasoning or planning needed or desired
« Generalize in predictable ways, provide transparancy
« Use prior knowledge or constraints: ‘business logic’, fairness

LLMs notoriously bad in multi-step reasoning (e.g., Sudoku)
Some deep RL methods do look ahead (e.g. AlphaGo)

A

u!éjéuéj_ / 48321]4
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What makes these tasks hard

Requirements for capable Al agents

Handle modest

‘niche’ datasets

Explicit reasoning X v
or planning

Instruction v X
following
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A modular point of view

A modular point of view can help address these issues

Example:

« Modules form a hierarchy with one high-level policy that chooses to
activate one of several low-level policies

Herke van Hoof | 9 Modular learning for improving Al assistants



A modular point of view

Modular strategies can help address the main challenges:

* Modular strategies can generalize in a predictable and structured
manner, efficiently learning from relatively small amounts of data.

* Modular strategies can help bridge between low-level and high-
level behavior, aiding instruction following, reasoning and planning.
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Our work on modular learning so far
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Our work on modular learning so far
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Our work on modular learning so far

e Tosetleney T Laaming & Pianning | nseion flowing

Our work on this topic focuses on the

underlying principles, and not (yet) on
scaling up to complex applications

Hopner et al., 2022 ‘/

Woehlke et al., 2022 v v V2
v

Kuric et al., 2023 ‘/

Kuric et al., 2024 \/ \/ \/

Hopner et al., 2025 ‘-/ ;/2 \-/

Macfarlane et al., 2025 \/
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Modular learning
for improving Al assistants

Woehlke et al., 2022 v v V2

Kuric et al., 2024 v v v

Macfarlane et al., 2025 \/
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Modular learning
for improving Al assistants

Woehlke et al., 2022 v v Y2

Kuric et al., 2024 v v v

Macfarlane et al., 2025 \/
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Modular learning
for improving Al assistants

Woehlke et al., 2022 v v Y2

» Learning and planning have different advantages
-. * How can learning and planning modules interact?
 Does this allow tackling large and complex domains?

Kuric et al., 2024 v v v

Macfarlane et al., 2025 \/
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Modular learning
for improving Al assistants

Woehlke et al., 2022 v v Y2

» Learning and planning have different advantages
* How can learning and planning modules interact?
 Does this allow tackling large and complex domains?

Kurlc et al., 2024 \/ \/ \/

* How to learn for complex & never before seen instructions?
— 3 q
* Pre-learn behavior modules for different context

» Use on-the-fly planning to combine these modules

Macfarlane et al., 2025 \/
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Modular learning
for improving Al assistants

Woehlke et al., 2022 v v Y2

» Learning and planning have different advantages
* How can learning and planning modules interact?
 Does this allow tackling large and complex domains?

Kuric et al., 2024 v v v

A NE * How to learn for complex & never before seen instructions?
— 3 q
>\, * Pre-learn behavior modules for different context

» Use on-the-fly planning to combine these modules

Macfarlane et al., 2025 \/

@D - >@@ WD . | earn symbolic ‘language’ to describe mappings

m---<,> D Allows compositional generalization in learned model
=Bl amp ©  16st-time optimization using differentiable decoder
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Planning and learning modules

Al assistants should be capable of quick adaptation to changes
In their environment

Pure learning approaches would need large amount of data /
experience to react to new changes

Can planning help?

Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Planning and learning modules

While planning does not use data, it requires time, especially
for large problems.

Can we decompose a family of large decision making problem
into two modules?

* Alocal, learned module is learned and can decide fast. A local focus
makes the learning problem much easier.

» A global planning module can adapt to changes in environment. Local
details can be abstracted

Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation
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400 positions x 8 orientations
= 3200 states

Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:

grid world navigation

Current
; ’ E orientation

4

Possible
; ’ E actions

400 positions x 8 orientations
= 3200 states

H EEEEEEEEEE - EEmEE
E°EE EE"EE EE-EmEEE-E
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S

Global planning in abstracted
problem

Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation

Global planning in abstracted

problem
Current
orientation :H H H:
l
‘ E°EE EE"EE EE-EmEEE-E -
Pos_sible :.: L. :H: I
5 l EESESESESSEESESE BENS
400 positions x 8 orientations 16 positions,
= 3200 states no orientation

Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation

Global planning in abstracted

problem
Current
orientation :H H H:
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Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation

Global planning in abstracted
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orientation :H H H:
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Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation

Global planning in abstracted
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orientation :H H H:
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Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation

Global planning in abstracted

problem
Current
orientation :H H H: 5 6 7
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Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation

Global planning in abstracted

problem
Current
orientation :H H H: 5 6 7 8
|

‘ Saif ELEE i 4 (1 |8

;l:i‘iiiiif fLif HHEEH S S 3 | w3

naEESBEEEEAEEES REEE 2 1 2

400 positions x 8 orientations 16 positions,
= 3200 states no orientation

Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Motivating example:
grid world navigation

Local decision-making function

_ . NE NE NE
Orientation
(repeated) NE NE NE
NE NE NE
Map

Coarse s ]1e o
values
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Motivating example:
grid world navigation

Local decision-making function
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Motivating example:
grid world navigation

Local decision-making function

_ . NE NE NE
Orientation
(repeated) e
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SiEESSISiRSINiSiiE Together describe environment locally
Map Generalizes to new maps or goals
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Coarse - Coarse values describe global context
values | Can quickly compute for new environment
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Motivating example:
grid world navigation

NE NE NE

Orientation
(repeated)

Map

Coarse
values
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Motivating example:
grid world navigation

_ . NE NE NE
Orientation
(repeated) e
Map
Convolutional
neural network
Coarse
values
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Motivating example:
grid world navigation

_ . NE NE NE
Orientation
(repeated) el
Map
(s, a)
Convolutional Refined
neural network  action-value
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Grid world navigation result

Best performance with full Ground truth refinement
(Only possible in small env)

planning (but most costly) Full planning
(Only possible

, _ in small env)
Local refinement close in 1.0 { prmmm
performance (lower cost) Fy DON
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Wobhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In IJCAI.
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Grid world navigation result

Ground truth refinement

Best performance with full (Only possible in small env)
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Wobhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In IJCAI.
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Parking task

Dynamics of 2nd vehicle
unknown - exact planning not
possible

Wobhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In IJCAI.
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Parking task

Dynamics of 2nd vehicle
unknown - exact planning not
possible

VRN achieves a high succes
rate without costly re-planning

Wobhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In IJCAI.

Herke van Hoof |19 Modular learning for improving Al assistants



Parking task

Dynamics of 2nd vehicle
unknown - exact planning not
possible

VRN achieves a high succes
rate without costly re-planning
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Wobhlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In IJCAI.
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Takeaways

Decomposing a problem into approximately independent subtasks
helps find solutions efficiently
Leverages strength of learning and planning methods:
* Learning can handle high-d observations and complex dynamics
* Planning can generalize easily to different lay-outs

Wohlke, J., Schmitt, F., & van Hoof, H. (2022). Value Refinement Network (VRN). In [JCAI.
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Our work on modular learning so far

v v &

» Learning and planning have different advantages
. * How can learning and planning modules interact?
%"« Does this allow tackling large and complex domains?

Kuric et al., 2024 v v v

A NE * How to learn for complex & never before seen instructions?
— 3 q
>\, * Pre-learn behavior modules for different context

» Use on-the-fly planning to combine these modules

Macfarlane et al., 2025 \/

@D - >@@ WD . | earn symbolic ‘language’ to describe mappings
G-I D

G- e optimization using diferentiable decoder
R p g
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Modular instruction following

* RL agents often learn single task, possibly goal conditioned

« Capable Al assistants should be able to handle more
complex instructions

Kuric, D., Infante, G., Gobmez, V., Jonsson, A. & van Hoof, H. (2024). Planning with a learned policy basis to optimally
solve complex tasks. In /ICAPS.
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Modular instruction following

* RL agents often learn single task, possibly goal conditioned

« Capable Al assistants should be able to handle more
complex instructions

* Here: learn tasks described by Finite State Automaton

start ™

”Lr—
Qno('_ﬁ
.

Kuric, D., Infante, G., Gobmez, V., Jonsson, A. & van Hoof, H. (2024). Planning with a learned policy basis to optimally
solve complex tasks. In /ICAPS.
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Modular instruction following

* Instructions described by FSA are composed S
of smaller tasks, but these tasks are not @
independent
. ®| X o
* Assumption:
 Layout fixed, but unknown 0 ur
* Instructions variable, given to the agent
& [
A
&*®
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Modular instruction following

Step 1: Learn a policy basis

Step 2: Plan with learned basis
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Modular instruction following

Step 1: Learn a policy basis

« Treat long-term desirability of each labeled exit state £ (v,=) as a
vector variable w

 Learn coverage set 11 containing optimal policy for any w

- Learn the probability ” of reaching each labeled exit state & for each
nell

Step 2: Plan with learned basis
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Modular instruction following

Step 1: Learn a policy basis

« Treat long-term desirability of each labeled exit state £ (v,=) as a
vector variable w

 Learn coverage set 11 containing optimal policy for any w

- Learn the probability ” of reaching each labeled exit state & for each
nell
Step 2: Plan with learned basis

« Dynamic programming can be executed with the set of labeled exit
states and the set of policies 7 € 11

* In step 2, we need only access to pre-computed probabilities and the
instructions. No new interaction with the environment is needed.
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Results across different instructions

o Office Office
—251 01
-50
) -501
o —7/5
- D
o -100 @© —100
= =
+ =125 )
= ~ _150
8 —-150 —— LOF
—-175 FlatQ 500 —— Ours
—-200 I —— OQurs — LOF
00 02 04 06 08 10 12 14 0 10 20 30 40 50
# samples 1es # iters

Learning is faster for modular strategies (LOF & Ours)

Planning often faster in our method as we plan at logical level

Kuric, D., Infante, G., Gobmez, V., Jonsson, A. & van Hoof, H. (2024). Planning with a learned policy basis to optimally
solve complex tasks. In /ICAPS.
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Extension to continuous state space

FSA labels are now generated by regions in the state space
Area within a region is represented by basis features
Policy basis learning unchanged

Planning now relies on a regression e ¥
step to generalize cost-to-go to 45
entire state space ] S
\ B
\ B
\ B
A B|B
\ W |5

Van Gelder, T. & van Hoof, H. Learning Spatially Refined Sub-Policies for Temporal Task Composition in Continuous
RL. Submitted.
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Results In continuous space

Original Office 6 FSA Office Teleport
ol — flat_dgn 0l —— flat_dgn
—— sfols_dqn , —— sfols_dgn

o —251 - —-25+4
5 — lof_dgn = — lof_dgn
2 -501 Z -50
o o
a =751 a —75-
2 | g
" —100 / &% -100
o | o
g —125 1 %J -125
5 —150 1 § -150
= 175 = -175

-200 - —200+

0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5 0.6
Total Timesteps %108 Total Timesteps x10°

In several continuous-state tasks, outperform ‘logical options
framework’ (esp. stochastic environment) and flat DQN

Van Gelder, T. & van Hoof, H. Learning Spatially Refined Sub-Policies for Temporal Task Composition in Continuous
RL. Submitted.
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Takeaways

We can pre-learn a policy basis that allows optimal zero-shot
execution of any instruction provided as FSA

Explicit planning helps data efficiency & allows instruction
following

Optimal behavior requires very large basis. Close to optimal
performance is possible with a (much) smaller set.

Kuric, D., Infante, G., Gobmez, V., Jonsson, A. & van Hoof, H. (2024). Planning with a learned policy basis to optimally
solve complex tasks. In /ICAPS.
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Modular learning
for improving Al assistants

v v &

Learning and planning have different advantages
How can learning and planning modules interact?

2
e
[ J

gl » Does this allow tackling large and complex domains?
“1 I I
v v v
R A NE * How to learn for complex & never before seen instructions?
> Yo * Pre-learn behavior modules for different context

Use on-the-fly planning to combine these modules

Macfarlane et al., 2025 \/

@END»> - >@ W . | earn symbolic ‘language’ to describe mappings
EGED- - GED

- e optimization using ifferontiable decoder
R p using
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Modular learning for neural
program synthesis

Program synthesis: find program to explain relation between
Inputs and outputs

<[>
<[>

<[>

Symbolic approach: composition generalization of explicit rules
Neural approach: program is network, often monolithic

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

ldea 1: learned symbolic representation, allowing
compositional generalization in a neural model

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

ldea 2: Test-time gradient-based search for best program in
learned language

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

ldea 2: Test-time gradient-based search for best program in
learned language

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

ldea 2: Test-time gradient-based search for best program in
learned language

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

ldea 2: Test-time gradient-based search for best program in
learned language

—>
@i

Loss

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

ldea 2: Test-time gradient-based search for best program in
learned language

<[> —» <[> <[>

-

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.

N
e

Loss
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Search in a compositional space

ldea 2: Test-time gradient-based search for best program in
learned language

—>
@i

Loss

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

-
Neural Program Search
~ma)f logpﬁ(yt'ruin ’mtmin, 21y ZT)
Z1ye s 92T
1:1;1:»(19];”1 ;y;r;]»?; 1 Lirain  Ytrain /
24139 93142} Inductor ;34:; ;:43; interpreter 1
41 142——» — logpg
92418/ 81429 44 92418 81429 Py |
\ VZ], y #T
>y b y
' 21 Z9 2T <
/ ~— J
Ttest Interpreter Ytest Interpreter
73721 po —» 12737 y'\,pa(yl,’[)’zl’,_,7ZT)
T Y
24139 Executor 94132 Executor o] Executor 93142

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

Neural Program Search
_max 10g pg(Yerain |Ztrain, 21, - - > 21)
Ltrain  Ytrain o - _—]
13491 19431 o e ~
Inductor 13491 8431 Interpreter
24139 93142 24139 93142—————> — log py
92418 81429 d¢ 92418 B1429 g b |
R R :_\_x\‘\;‘ VZ], c ey 2T
22 .« o ZT E.< ’
---------------- ! J
« Map of (x,y) pairs to length-T |
sequence with transformer nt(e|rpreter )
. . Yy~ poly|T,21,...,2
« Map each item to logits P

* Gumbel-softmax trick to draw
sequence of ‘soft’ one-hot samples
representing symbols in program

Y
94132 Executor o] Executor 93142

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.
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Search in a compositional space

Ltrain  Ytrain
13491 19431

24139 93142
92418 81429

Inductor
d¢

\_l_l

\

Ltes Ytes
Ttest | Interpreter| _Yest
73721—> —>12737

Do

/

r

)
24139 Executor 941

Neural Program Search

max 1og pg(Yirain|Tirain, 21, - - -, 27)
Z1ye s 92T

)

* Apply symbol-dependent
transformer to state

» Map to logits and draw soft-sample
for next state with Gumbel-softmax

 Application of differentiable ‘skip’

symbol to allow shorter programs

(2] [ez]

Y
o Executor 93142

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted

Languages. Submitted.
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Search in a compositional space

Neural Program Search

Ltrain  Ytrain

Ytrain

13491 19431
Inductor 13491) @e431 Interpreter
24139 93142 24139 93142——> —> log pg
92418 81429 q¢ 92418 81429 \ Do |
~_
R D ~— Vzi,... 27
A}
1
Zl 22 S oo ZT ;,<
7

Interpreter
Yy PO(?}|7‘7 Rlye==s ZT)

Y
94132 Executor o] Executor 93142

M. Macfarlane, C. Bonnet, H. van Hoof & L. Levis. Gradient-based program synthesis with Neurally Interpreted
Languages. Submitted.

» For new tasks, fine-tune program
on specification dataset

 Possible thanks to fully

differentiable interpreter
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Results on generalization benchmark

Shift-L
Method ID OOD
In-Context 1.00 0.00
I'T1 1.00 0.00
LPN 1.00 0.00
LPN Gradient Search 1.00 0.03
D-LPN 1.00 0.02
D-LPN Gradient Search 1.00 0.01
NLI 1.00  0.00
NLI Prior Search 1.00 0.10
NLI Gradient Search 1.00  0.99

Train on left shift by 1 - 5 places
OOD on shifts of 6 - 10 places
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Results on generalization benchmark

Shift-L Train on left shift by 1 - 5 places
Method ID OOD OOQOD on shifts of 6 - 10 places
In-Context 1.00  0.00
TTT 1.00  0.00
LPN 1.00  0.00
LPN Gradient Search 1.00 0.03
D-LPN 1.00  0.02
D-LPN Gradient Search  1.00  0.01
NLI 1.00  0.00
NLI Prior Search 1.00

NLI Gradient Search 1.00 € 0.99

Compared to neural baselines, only proposed “neural language
interpreter” + gradient search does well out-of-distribution
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Results on generalization benchmark

Shift-L Shift-P Comp-I

Method ID OOD ID OOD ID OOD
In-Context .00 000 100 000 1.00 0.13
I'TI 1.00 000 100 000 09 0.14
LPN .00 000 100 000 1.00 0.18
LPN Gradient Search .00 003 100 000 1.00 0.29
D-LPN .00 002 100 000 099 0.15
D-LPN Gradient Search 1.00 0.01 1.00 000 099 0.20
NLI .00 000 100 000 1.00 0.17
NLI Prior Search 1.00 1.00 0.00 1.00 0.23

NLI Gradient Search 1.00 C 0.99 )1.00 1.00 1.00 0.91

Compared to neural baselines, only proposed “neural language
interpreter” + gradient search does well out-of-distribution
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Results on generalization benchmark

Learned Program Representations for Shift-L

Ground Truth Program

NLI

Program Representation

shift_left (1)
shift_left (2)
shift_left (3)
shift_left (4)
shift_left (5)

shift_left (8)

(OOD)

231

231 231
476 231
476 476

231 231 231 476 476

Compared to neural baselines, only proposed “neural language
interpreter” + gradient search does well out-of-distribution
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Results on generalization benchmark

Learned Program Representations for Shift-L

Ground Truth Program NLI Program Representation
shift_left (1) 231

shift_left (2) Zizpl Pazhl

shift_left (3) zizpl Pazlil 2zl

shift_left (4) 231 476 231

shift_left (5) 231 476 476

shift_left (8) (OOD) 231 231 231 231 476 476

Compared to neural baselines, only proposed “neural language
interpreter” + gradient search does well out-of-distribution

NLI symbols can aid interpretation
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Results on DeepCoder benchmark

B NLI EEN In-context Il Transformer Program Synthesis
RSN (PN EES ExeDec EEl |atent Programmer

W & U
o o (=
T T 1

N
(=}

Test Accuracy (%)|

[
o
T

TAT

0 L'l

ngth Compose Different Switch Concept Compose New Add peration
Generalization Concepts Order Operation Functionality

Compared to neural baselines, only proposed “neural language
interpreter” + gradient search does well out-of-distribution

NLI symbols can aid interpretation
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Results on DeepCoder benchmark

B NLI EEN In-context Il Transformer Program Synthesis
LPN EEE ExeDec B Latent Programmer

N W & u
o o o (=
T T 1

Test Accuracy (%)|

[y
(=}
T

i
\
§
\
\
§
\
i

Length Compose Different Switch Concept Compose New Add Operation
Generalization Concepts Order Operation Functionality

Compared to neural baselines, only proposed “neural language
interpreter” + gradient search does well out-of-distribution

NLI symbols can aid interpretation

Competitive performance with neuro-symbolic methods, that
require ground-truth programs during training
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Modular learning
for improving Al assistants

v v 7

Learning and planning have different advantages
How can learning and planning modules interact?
Does this allow tackling large and complex domains?

2
i o
[

-IL I
Al
v v v
A NE » How to learn for complex & never before seen instructions?
_> N .
i * Pre-learn behavior modules for different context

Use on-the-fly planning to combine these modules

v

Learn symbolic ‘language’ to describe mappings
m » Allows compositional generalization in learned model

Y Test-time optimization using differentiable decoder
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Wrap-up

Capable Al assistants require at least
 Data-efficient learning and generalization to handle niche domains
 Explicit reasoning or planning to provide transparency & predictability
* Instructability: provide a channel for specifying the user’s wishes
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Wrap-up

Capable Al assistants require at least
 Data-efficient learning and generalization to handle niche domains
 Explicit reasoning or planning to provide transparency & predictability
* Instructability: provide a channel for specifying the user’s wishes

Modular learning helps to make progress

on all these dimensions
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Wrap-up

Detailed look at three research projects

Herke van Hoof |45 Modular learning for improving Al assistants



Wrap-up

Detailed look at three research projects

Composition of global planning with local
learning module to strike a balance between
flexible generalization and reactivity
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Wrap-up

Detailed look at three research projects

Composition of global planning with local
learning module to strike a balance between
flexible generalization and reactivity

Composition of policy modules from a pre-
learned basis to allow optimal zero-shot
generalization to never-before seen instructions
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Wrap-up

Detailed look at three research projects

Composition of global planning with local
learning module to strike a balance between
flexible generalization and reactivity

Nay Composition of policy modules from a pre-
— learned basis to allow optimal zero-shot
generalization to never-before seen instructions

RIS

Neural learning of symbolic ‘language’ allows
p————Gre—""Y compositional generalization and test-time

Ca—2 2 ) optimization
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Modular learning
for improving Al assistants

A possible architecture

Pre-learning

0 71-3
=
A
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Modular learning
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A possible architecture

start

% Planning
Pre-learning
o 71-3
=
A
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Modular learning
for improving Al assistants

A possible architecture

Pre-learning

fi ° Planning =

uT

.h
~
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.h
~
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Modular learning
for improving Al assistants

A possible architecture

ﬁz 0 Planning =

uT

Pre-learning

.h
~
~
.h
~

A

What is still required
« Intuitive instructability (e.g., language) while maintaining predictability
« Compositional algorithms with bounded sub-optimality at scale
* Predictable behavior with real-world sensors
« Study of interpretability and useability of modular systems
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Modular learning
for improving Al assistants

A possible architecture

Planning —
Pre-learning
* 0 —_—0 -, - ——
= | B T
o L ~ 1_
A
o

What is still required
« Intuitive instructability (e.g., language) while maintaining predictability
« Compositional algorithms with bounded sub-optimality at scale
* Predictable behavior with real-world sensors
« Study of interpretability and useability of modular systems
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Modular learning
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A possible architecture

Planning —

Pre-learning
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~
~
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A

What is still required
« Intuitive instructability (e.g., language) while maintaining predictability
« Compositional algorithms with bounded sub-optimality at scale
* Predictable behavior with real-world sensors
« Study of interpretability and useability of modular systems
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Modular learning
for improving Al assistants

A possible architecture

Planning —

Pre-learning

.h
~
~
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— —
(- I it” W | <
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A

What is still required
« Intuitive instructability (e.g., language) while maintaining predictability
« Compositional algorithms with bounded sub-optimality at scale
* Predictable behavior with real-world sensors
« Study of interpretability and useability of modular systems
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Modular learning
for improving Al assistants

A possible architecture

Pre-learning

What is still required
« Intuitive instructability (e.g., language) while maintaining predictability
« Compositional algorithms with bounded sub-optimality at scale
* Predictable behavior with real-world sensors
« Study of interpretability and useability of modular systems
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Modular learning
for improving Al assistants

Pre-learning

......

AN L S I
O O External
.................................... O Cleaning
www.switchmybusiness.com Wikipedia/DeepMind [Peer et al., 2018]
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