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Why open / on-device models? 

● Deploy on own hardware
● Scale as needed
● No data transfer

○ Privacy
○ No bandwidth latency

● Offline usage
● Can be finetuned



Popular open models 

Bert
GPT-2

T5

Llama
Gemma 
Mistral

Qwen
DeepSeek

Kimi

Olmo
Pythia
Bloom

Phi
gpt-oss



Ingredients of pre-training an LLM 

● Architecture
● Data
● Optimization
● Quantization
● Modalities / Capabilities

○ Vision
○ Long-context 

● Evaluation



Aim of architecture choices in on device models 

● Improve accuracy
○ Eg, better residual connection

● Reduce latency
○ Eg, Smaller model

● Reduce KV cache
○ Eg, MLA

● Make model easier to 
quantize

○ Eg, more norms
● Increase stability

○ Eg, more norms
● Simplicity

○ Good for open source



How to evaluate architecture changes?

● Perplexity on different domain data
○ Cleaner so more signal
○ Downstreams only used for larger runs

● Infra metrics
○ Inference latency
○ Training step time
○ Device memory usage

● Scalability
○ Change should hold across model sizes

● Stability
○ Gradient norms look normal, i.e., no spikes



Transformer basics 

Attention mechanism



Transformer basics 

Wide and shallow
Deep and 

narrow

Aspect ratioFeed Forward Layer



Transformer basics (cont.) 

Hyperparams

● Wavelength
● Scale factor

Benefits:

● Relative distance
● Efficient 
● Generalizable



Transformer basics (cont.) 

KV cache is shared 
between prefill and 
decode

For a single layer and 
a single token

Size of KV cache = 

prefill decode



Gemma series of models 





Gemma 1 

https://arxiv.org/pdf/2403.08295 https://arxiv.org/pdf/2002.05202

https://arxiv.org/pdf/2403.08295
https://arxiv.org/pdf/2002.05202


Gemma 2 
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https://arxiv.org/pdf/2408.00118

● 1:1 local global attention
● 4096 sliding window size

For a sequence length of 8192

All global kv cache, 

Interleaved kv cache = 

https://arxiv.org/pdf/2408.00118


Gemma 2 (cont) 

Softcapping: 

https://arxiv.org/pdf/2408.00118

https://arxiv.org/pdf/2408.00118


Gemma 3 
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● 5:1 local global 
attention

● 1024 sliding window 
size

KV cache size = 

https://arxiv.org/pdf/2503.19786

https://arxiv.org/pdf/2503.19786


Rope config

Gemma 3 (cont) 
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Gemma 3n 

Embed
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Per Layer Embeddings

● Improved 
accuracy

● Total trainable 
params 
increases

● PLE doesn’t 
need to reside in 
device memory

● Cached in RAM

https://ai.google.dev/gemma/docs/gemma-3n
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https://ai.google.dev/gemma/docs/gemma-3n


Gemma 3n (cont) 

MatFormers in 
Gemma3n

● Nested submodels
● Applied only to FFN 

layers
● A single submodel 

for high latency 
requirement use 
cases

https://arxiv.org/pdf/2310.07707

https://arxiv.org/pdf/2310.07707


Gemma 3n (cont) 

KV Sharing

● First half of the layers calculate 
KV cache.

● Rest use the cache from the last 
layer.

● Prefill cost reduced to half

https://arxiv.org/pdf/2405.05254

https://arxiv.org/pdf/2405.05254


http://drive.google.com/file/d/1lFK2j4HWkYHJ1Zk3Hb3tzsWLQbEYbRgt/view


Interesting architecture updates from other open models.



Mixture of experts

● Improved accuracy 
at same flops

● Increased memory 
requirements

● Lower latency
● Load-balanced 

experts 



Multi-head Latent Attention 

https://arxiv.org/pdf/2405.04434

● Significant KV cache savings 
while maintaining accuracy

●           are cached

KV cache = 

we get kv cache savings, if

https://arxiv.org/pdf/2405.04434


Thanks!


