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Why open / on-device models?

e Deploy on own hardware

CLOSED MODEL
e Scale as needed (API ACCESS) (POEENNE
e No data transfer -
o Privacy

o No bandwidth latency
e Offline usage
e Can be finetuned




Popular open models




Ingredients of pre-training an LLM

Architecture

Data

Optimization
Quantization
Modalities / Capabilities
o Vision

o Long-context

e Evaluation

ARCHITECTURE

OPTIMIZATION

QUANTIZATION




Aim of architecture choices in on device models

Improve accuracy

(@)

EQ, better residual connection

Reduce latency

(@)

Eg, Smaller model

Reduce KV cache

(@)

Eg, MLA

Make model easier to
quantize

o Eg, more norms
Increase stability

o Eg, more norms
Simplicity

o Good for open source



How to evaluate architecture changes®?

e Perplexity on different domain data
o  Cleaner so more signal
o Downstreams only used for larger runs
e Infra metrics
o Inference latency
o Training step time
o Device memory usage

e Scalability
o Change should hold across model sizes
e Stability

o Gradient norms look normal, i.e., no spikes



Transformer basics
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Attention mechanism



Transformer basics
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Transformer basics (cont.)
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Transformer basics (cont.)

cached KV cache is shared
""""""""" |7 o |7 between prefill and
prefill decode decode decode
KV vectors
For a single layer and
The quick brown fox 3 jumps 3 over — a Slngle token
prompt output Size of KV cache =

niv * seq_len x head_dim
prefill decode



Gemma series of models



Rank (UB) ™

59

gemma-3-27b-it

gemma-3-12b-it

gemma-3n-edb-it

gemma-3-4b-it

gemma-2-27b-it

gemma-2-9b-it-simpo

gemma-2-9b-it

gemma-2-2b-it

gemma-1.1-7b-it

95% ClI (%) 1

Organization 1!

Google

Google

Google

Google

Google

Princeton

Google

Google

Google

License

Gemma

Gemma

Gemma

Gemma

Gemma lice...

Gemma lice...

Gemma lice...

Gemma lice...




Gemma 1

Multi-head Multi-query A
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https://arxiv.ora/pdf/2403.08295 https://arxiv.org/pdf/2002.05202



https://arxiv.org/pdf/2403.08295
https://arxiv.org/pdf/2002.05202

Gemma 2
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e 1:1local global attention
e 4096 sliding window size

For a sequence length of 8192

All global kv cache,
C =L x(n*8192xh)

Interleaved kv cache =
Ci = £ % (n*4096 x h + n * 8192 x h)

=Lunxhx12288=3C


https://arxiv.org/pdf/2408.00118

Gemma 2 (cont)

Grouped-query
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https://arxiv.org/pdf/2408.00118

Gemma 3
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https://arxiv.org/pdf/2503.19786



https://arxiv.org/pdf/2503.19786

Gemma 3 (cont)

Rope config

Gemma 2

Gemma 3
Position interpolation
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Gemma 3n

Per Layer Embeddings

https://ai.google.dev/gemma/docs/gemma-3n

Improved
accuracy

Total trainable
params
increases

PLE doesn’t
need to reside in
device memory
Cached in RAM


https://ai.google.dev/gemma/docs/gemma-3n

Gemma 3n (cont)

MatFormers in
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https://arxiv.ora/pdf/2310.07707



https://arxiv.org/pdf/2310.07707

Gemma 3n (cont)

You Only Cache Once

KV Sharing
Output
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https://arxiv.ora/pdf/2405.05254



https://arxiv.org/pdf/2405.05254



http://drive.google.com/file/d/1lFK2j4HWkYHJ1Zk3Hb3tzsWLQbEYbRgt/view

Interesting architecture updates from other open models.



Mixture of experts

. y,u:?:m v[TT]TT]
[P Ao+ Normaize j—— e Improved accuracy

; (R 8 at same flops
[ Ad+Nomalize | (o ] (o) (ma ] (emma]  (emn] (e ] (eema ) (eema )

1 i \ ——_ e Increased memory
; — =065 i o :
\ Sw1tchm9;FN Layer ] P | L | L reqU|rementS
( B ] | € e ? )] e Lower latency

Self-AtTtenﬁon \ ,—.[ T Add + Normalize T }‘— [ ) Load = ba | a nced
X %5 . ) Self-Attention X eXpe rts
RS T e © J
) x [TTITT] xe[TTITT]

More Parameters



Multi-head Latent Attention

Multi-Head Latent Attention (MLA)

i Cached During Inference
Output Hidden ut[OOOO ...... OOOO]
i

e Significant KV cache savings
while maintaining accuracy

[ Multi-Head Attention ] ® CtKV, kf are cached
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apply  apply we get kv cache savings, if
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https://arxiv.org/pdf/2405.04434
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