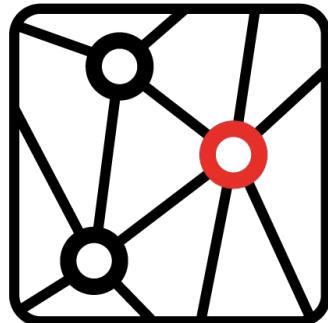


Architecture for open models

Shreya Pathak

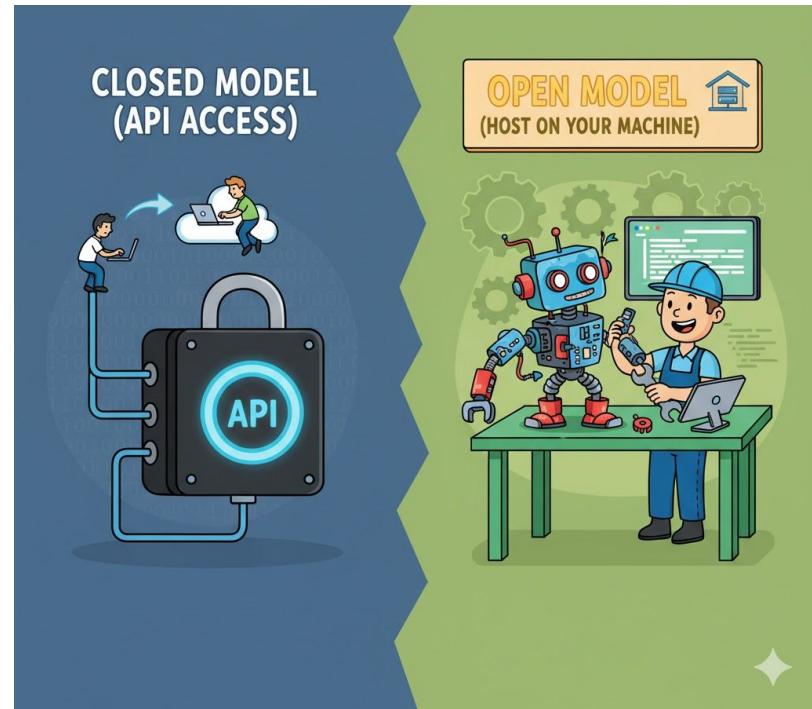
Google DeepMind



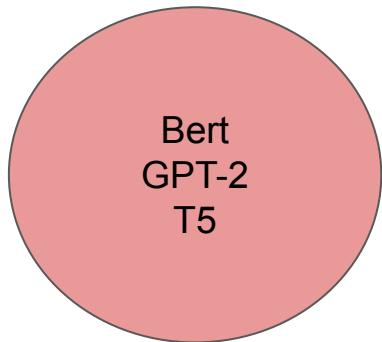
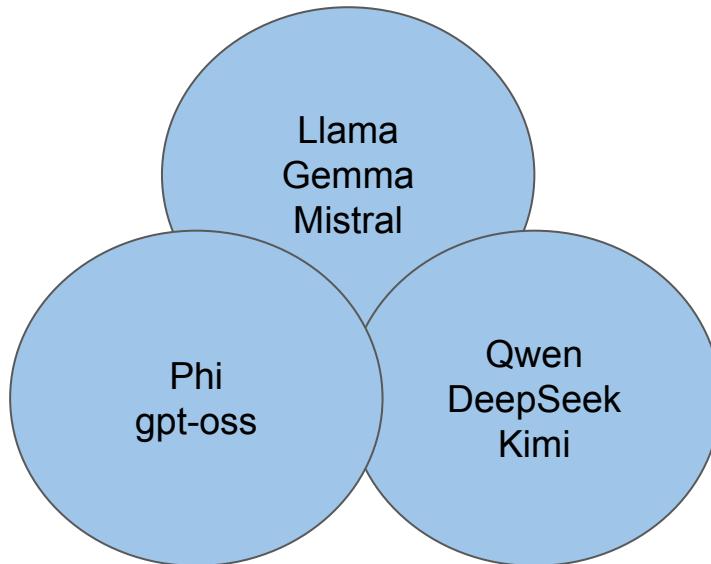
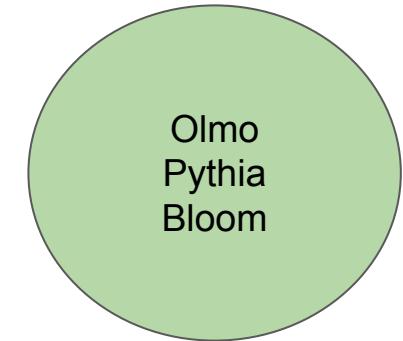
ML in PL
CONFERENCE 2025

Why open / on-device models?

- Deploy on own hardware
- Scale as needed
- No data transfer
 - Privacy
 - No bandwidth latency
- Offline usage
- Can be finetuned



Popular open models



Ingredients of pre-training an LLM

- **Architecture**
- Data
- Optimization
- Quantization
- Modalities / Capabilities
 - Vision
 - Long-context
- Evaluation

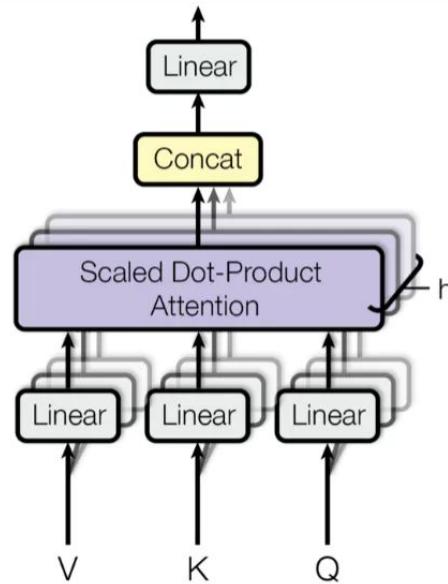
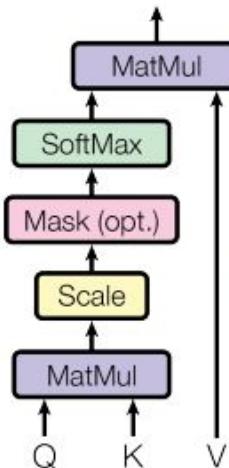
Aim of architecture choices in on device models

- Improve accuracy
 - Eg, better residual connection
- Reduce latency
 - Eg, Smaller model
- Reduce KV cache
 - Eg, MLA
- Make model easier to quantize
 - Eg, more norms
- Increase stability
 - Eg, more norms
- Simplicity
 - Good for open source

How to evaluate architecture changes?

- Perplexity on different domain data
 - Cleaner so more signal
 - Downstreams only used for larger runs
- Infra metrics
 - Inference latency
 - Training step time
 - Device memory usage
- Scalability
 - Change should hold across model sizes
- Stability
 - Gradient norms look normal, i.e., no spikes

Transformer basics



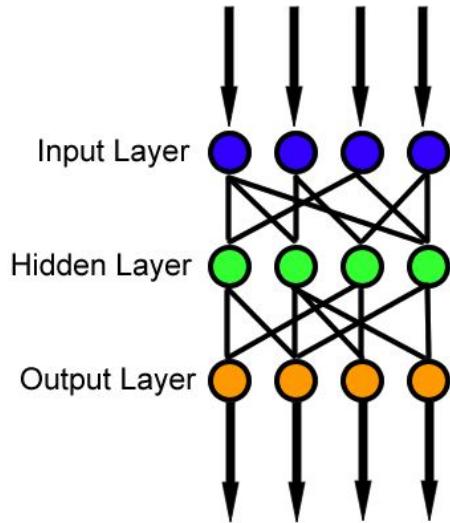
$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$$\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O$$

where $\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$

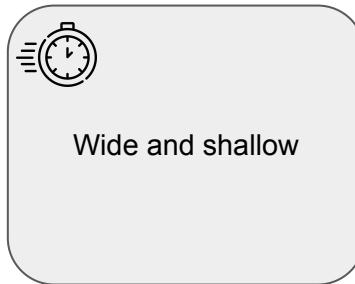
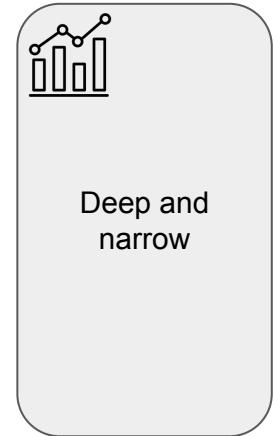
Attention mechanism

Transformer basics



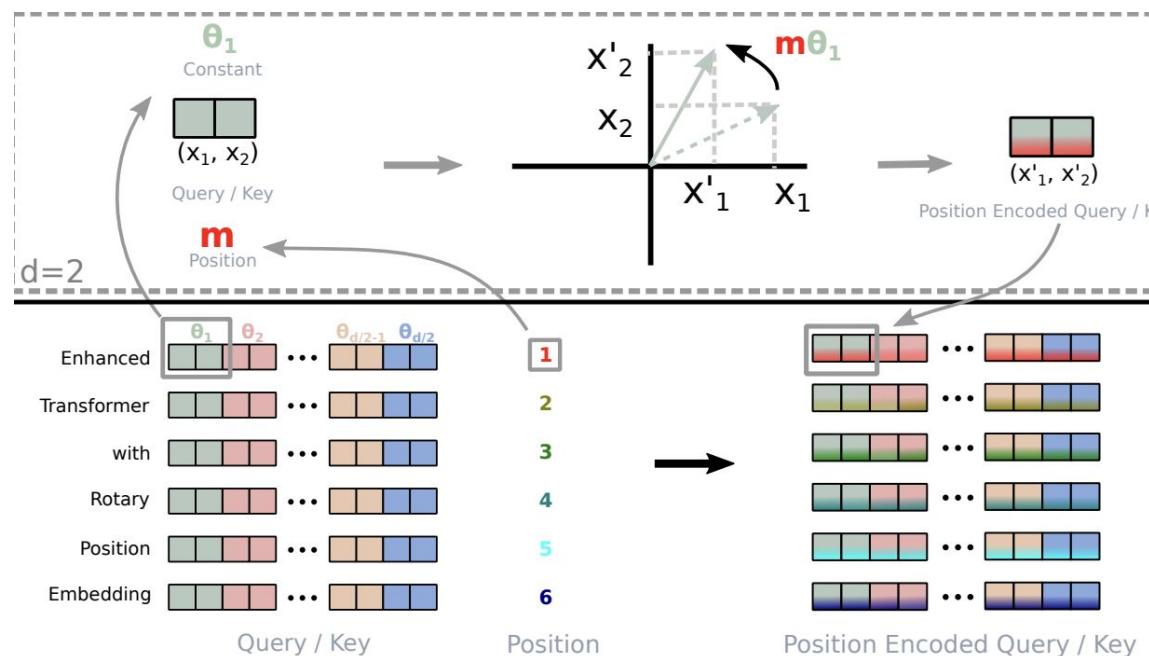
$$\frac{\text{attention FLOPs}}{\text{matmul FLOPs}} = \frac{12BT^2NH}{18BTDF + 24BTDNH} = \frac{12BT^2D}{4 * 18BTD^2 + 24BTD^2} = \frac{12BT^2D}{96BTD^2} = \frac{T}{8D}$$

Feed Forward Layer



Aspect ratio

Transformer basics (cont.)



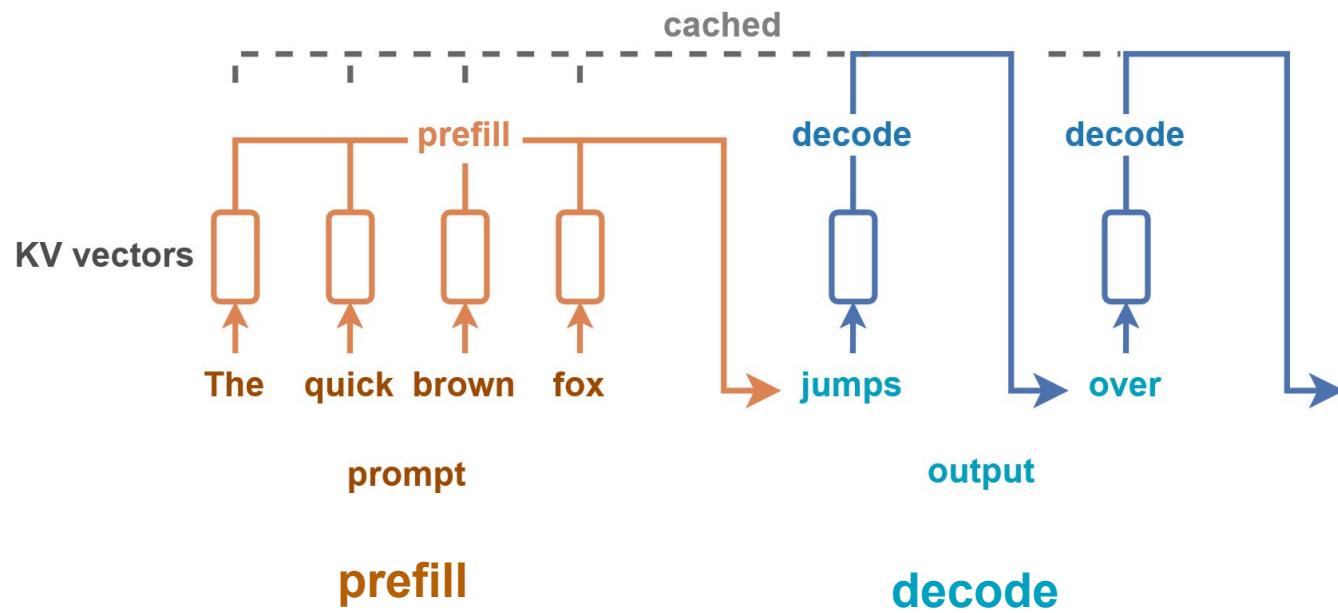
Hyperparams

- Wavelength
- Scale factor

Benefits:

- Relative distance
- Efficient
- Generalizable

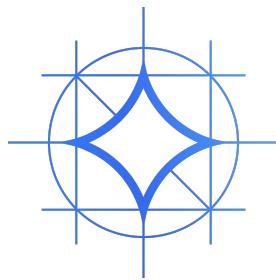
Transformer basics (cont.)



KV cache is shared between prefill and decode

For a single layer and a single token

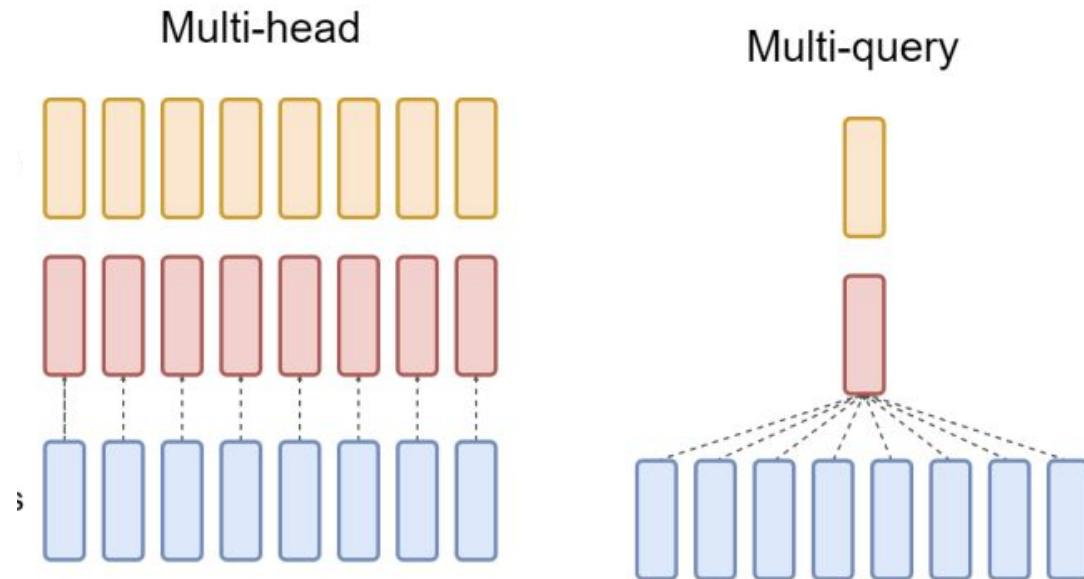
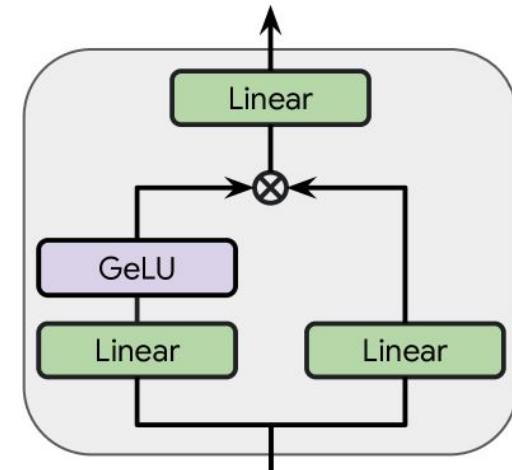
Size of KV cache =
 $n_k v * seq_len * head_dim$



Gemma series of models

Rank (UB) ↑	Model ↑↓	Score ↑↓	95% CI (±) ↑↓	Votes ↑↓	Organization ↑↓	License ↑↓
59	gemma-3-27b-bit	1362	±4	43,379	Google	Gemma
67	gemma-3-12b-bit	1340	±10	3,866	Google	Gemma
94	gemma-3n-e4b-bit	1318	±5	23,755	Google	Gemma
111	gemma-3-4b-bit	1302	±9	4,195	Google	Gemma
131	gemma-2-27b-bit	1285	±3	76,195	Google	Gemma lice...
133	gemma-2-9b-bit-simp0	1277	±7	10,108	Princeton	MIT
148	gemma-2-9b-bit	1262	±4	54,954	Google	Gemma lice...
183	gemma-2-2b-bit	1196	±4	46,901	Google	Gemma lice...
192	gemma-1.1-7b-bit	1177	±6	24,327	Google	Gemma lice...

Gemma 1



(b) Gated MLP block

Gemma 2

Global

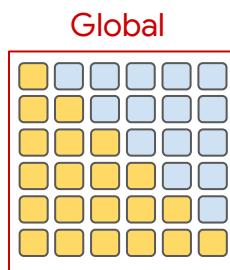
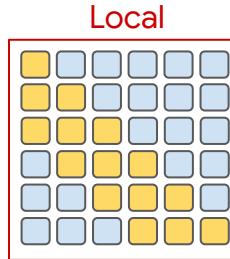
Local

Global

Local

Global

Local



- 1:1 local global attention
- 4096 sliding window size

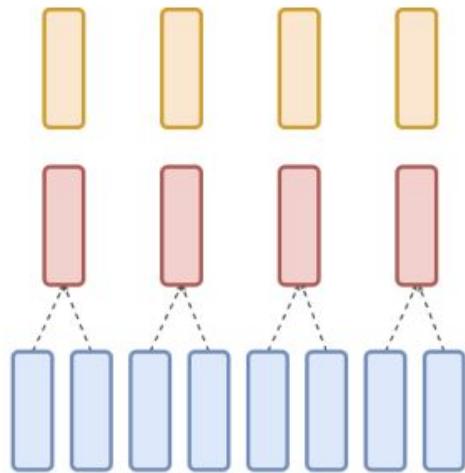
For a sequence length of 8192

All global kv cache,
 $C = L * (n * 8192 * h)$

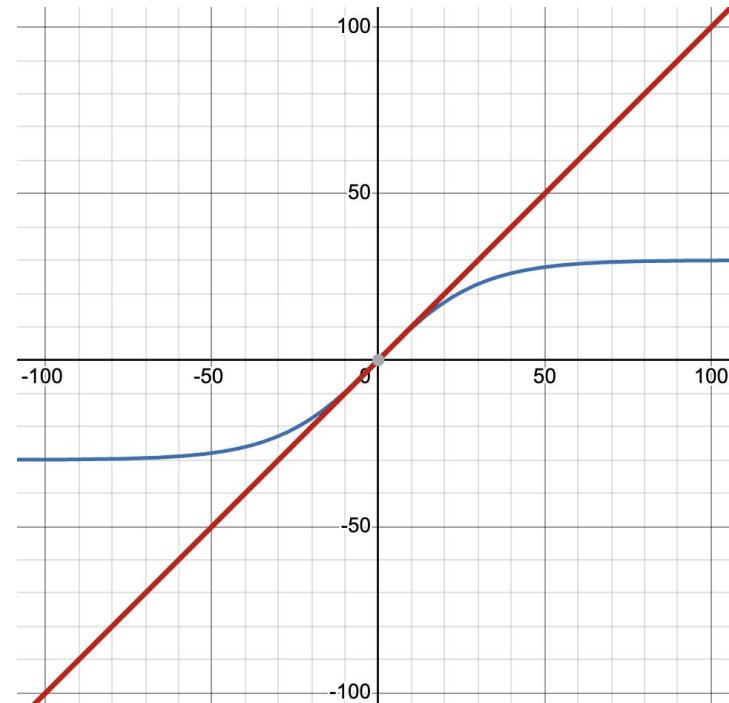
Interleaved kv cache =
$$C_i = \frac{L}{2} * (n * 4096 * h + n * 8192 * h)$$
$$= \frac{L}{2} * n * h * 12288 = \frac{3}{4}C$$

Gemma 2 (cont)

Grouped-query



$$n_{kv} = \frac{n}{2}$$



Softcapping: $y = \left(t \cdot \tanh\left(\frac{x}{t}\right) \right)$

Gemma 3

Global

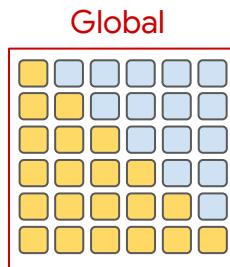
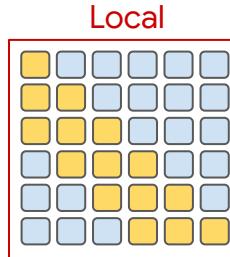
Local

Local

Local

Local

Local



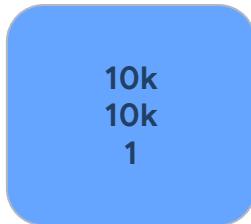
- 5:1 local global attention
- 1024 sliding window size

KV cache size =

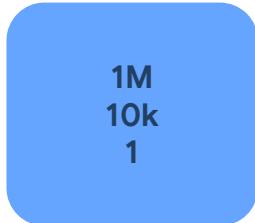
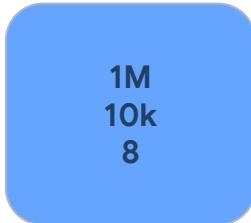
$$C_3 = \frac{L}{6} * (5 * n * 1024 * h + n * 8192 * h) \\ = \frac{L}{6} * n * h * 13312 = 0.27 * C$$

Gemma 3 (cont)

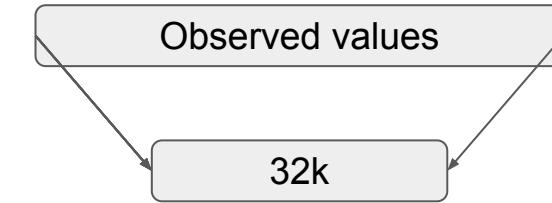
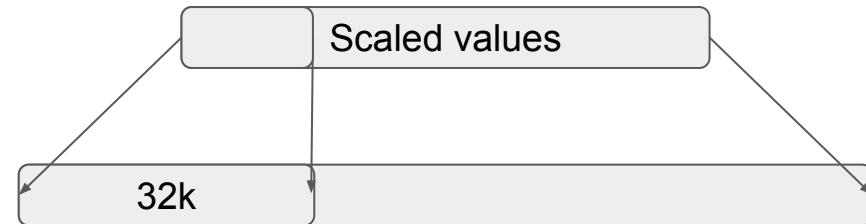
Rope config



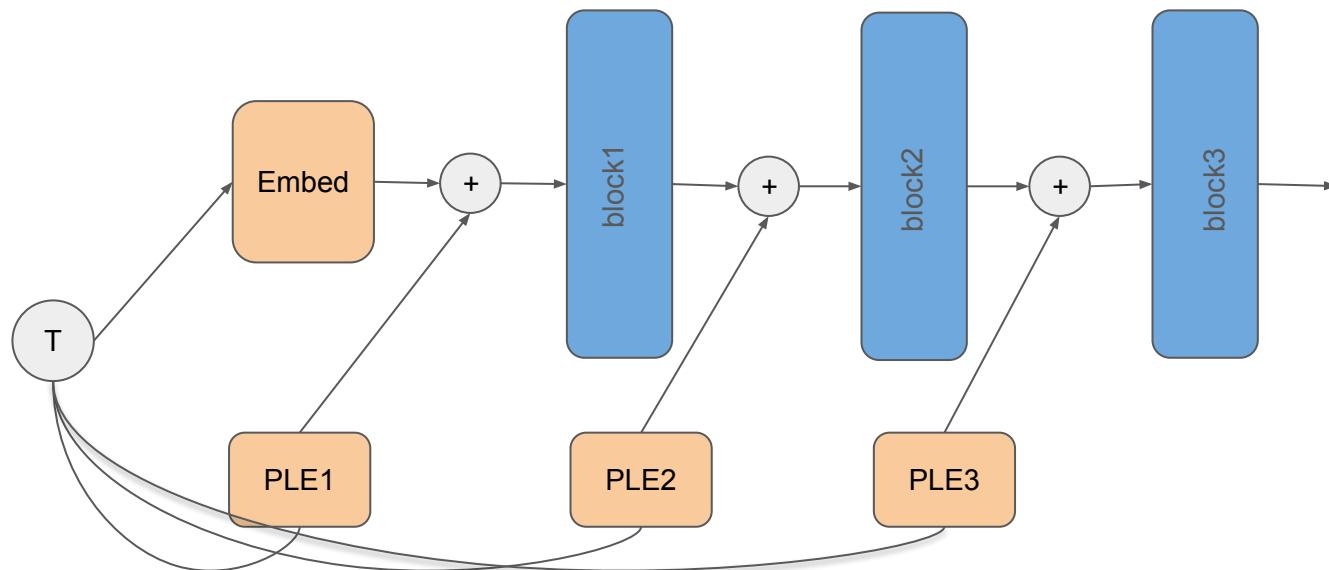
Gemma 2



Gemma 3
Position interpolation



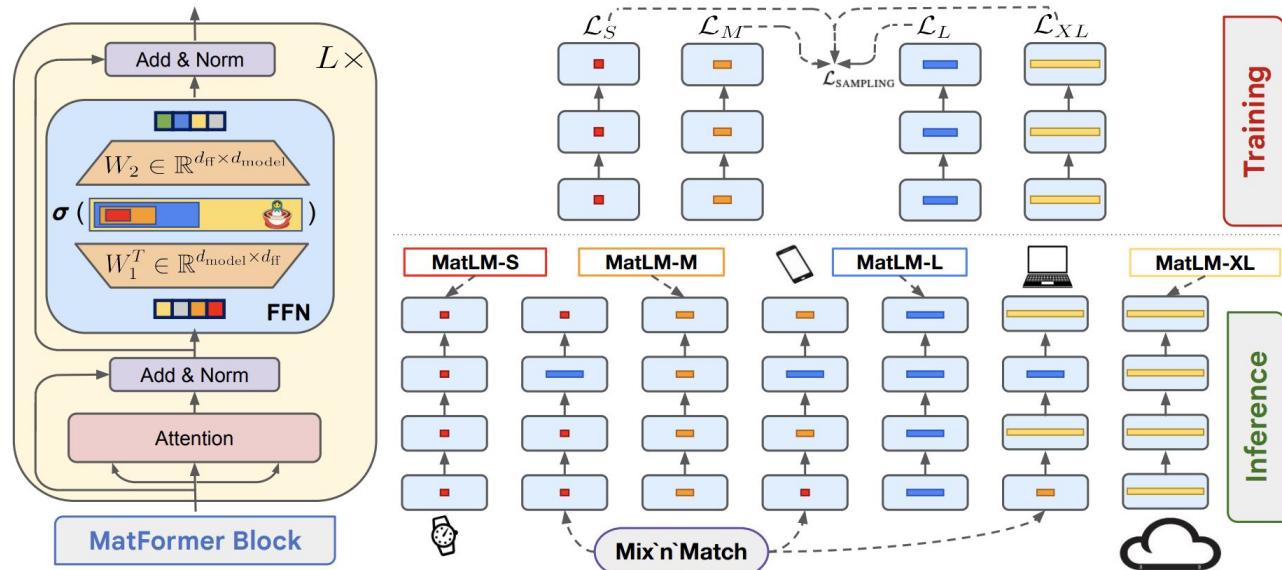
Gemma 3n



Per Layer Embeddings

- Improved accuracy
- Total trainable params increases
- PLE doesn't need to reside in device memory
- Cached in RAM

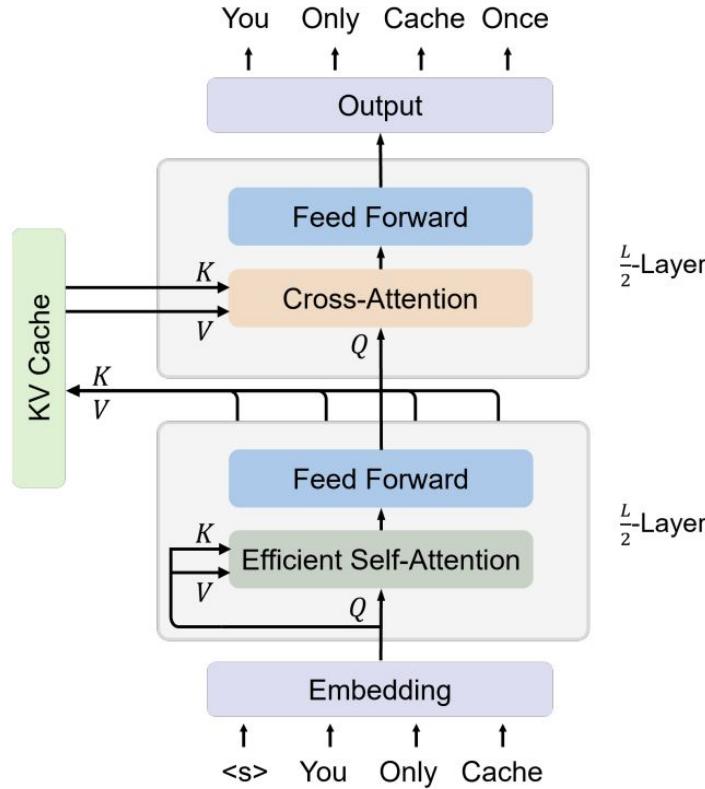
Gemma 3n (cont)



MatFormers in Gemma3n

- Nested submodels
- Applied only to FFN layers
- A single submodel for high latency requirement use cases

Gemma 3n (cont)

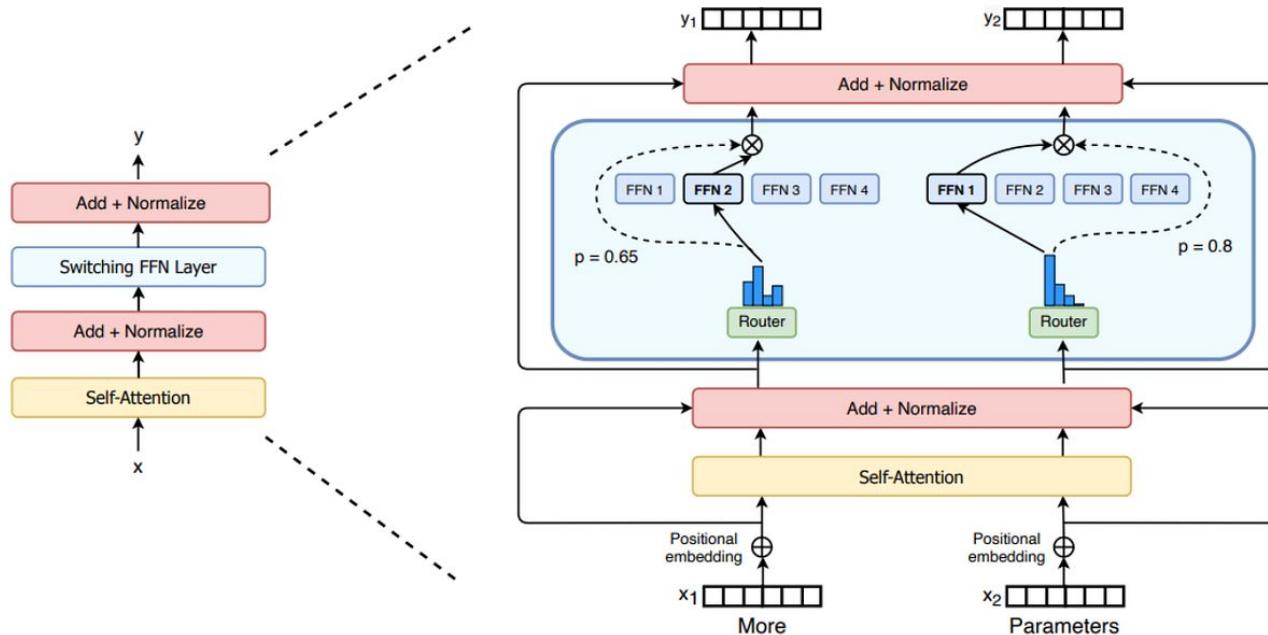


KV Sharing

- First half of the layers calculate KV cache.
- Rest use the cache from the last layer.
- Prefill cost reduced to half

Interesting architecture updates from other open models.

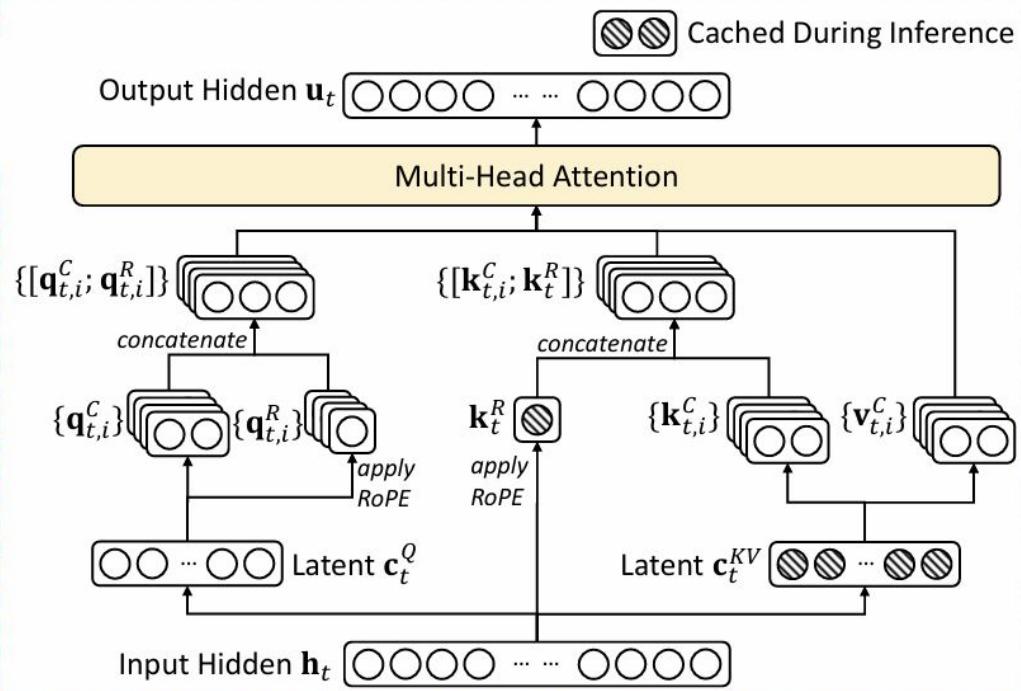
Mixture of experts



- Improved accuracy at same flops
- Increased memory requirements
- Lower latency
- Load-balanced experts

Multi-head Latent Attention

Multi-Head Latent Attention (MLA)



- Significant KV cache savings while maintaining accuracy
- c_t^{KV}, k_t^R are cached

KV cache =

$L * seq_len * (latent_dim + rope_dim)$
we get kv cache savings, if
 $latent_dim + rope_dim < 2 * (n * h)$

Thanks!

