
Architecture for open
models

 Shreya Pathak
Google DeepMind

Why open / on-device models?

● Deploy on own hardware
● Scale as needed
● No data transfer

○ Privacy
○ No bandwidth latency

● Offline usage
● Can be finetuned

Popular open models

Bert
GPT-2

T5

Llama
Gemma
Mistral

Qwen
DeepSeek

Kimi

Olmo
Pythia
Bloom

Phi
gpt-oss

Ingredients of pre-training an LLM

● Architecture
● Data
● Optimization
● Quantization
● Modalities / Capabilities

○ Vision
○ Long-context

● Evaluation

Aim of architecture choices in on device models

● Improve accuracy
○ Eg, better residual connection

● Reduce latency
○ Eg, Smaller model

● Reduce KV cache
○ Eg, MLA

● Make model easier to
quantize

○ Eg, more norms
● Increase stability

○ Eg, more norms
● Simplicity

○ Good for open source

How to evaluate architecture changes?

● Perplexity on different domain data
○ Cleaner so more signal
○ Downstreams only used for larger runs

● Infra metrics
○ Inference latency
○ Training step time
○ Device memory usage

● Scalability
○ Change should hold across model sizes

● Stability
○ Gradient norms look normal, i.e., no spikes

Transformer basics

Attention mechanism

Transformer basics

Wide and shallow
Deep and

narrow

Aspect ratioFeed Forward Layer

Transformer basics (cont.)

Hyperparams

● Wavelength
● Scale factor

Benefits:

● Relative distance
● Efficient
● Generalizable

Transformer basics (cont.)

KV cache is shared
between prefill and
decode

For a single layer and
a single token

Size of KV cache =

prefill decode

Gemma series of models

Gemma 1

https://arxiv.org/pdf/2403.08295 https://arxiv.org/pdf/2002.05202

https://arxiv.org/pdf/2403.08295
https://arxiv.org/pdf/2002.05202

Gemma 2

Local

Global

Global

Local

Global

Local

Global

Local

https://arxiv.org/pdf/2408.00118

● 1:1 local global attention
● 4096 sliding window size

For a sequence length of 8192

All global kv cache,

Interleaved kv cache =

https://arxiv.org/pdf/2408.00118

Gemma 2 (cont)

Softcapping:

https://arxiv.org/pdf/2408.00118

https://arxiv.org/pdf/2408.00118

Gemma 3

Local

Global

Local

Local

Local

Local

Global

Local

● 5:1 local global
attention

● 1024 sliding window
size

KV cache size =

https://arxiv.org/pdf/2503.19786

https://arxiv.org/pdf/2503.19786

Rope config

Gemma 3 (cont)

1M
10k

8

1M
10k

1

10k
10k

1

global freq
local freq

scale factor

Gemma 2

Gemma 3
Position interpolation

Observed values

32k

Scaled values

32k

Gemma 3n

Embed

PLE1 PLE3PLE2

+ ++

T

Per Layer Embeddings

● Improved
accuracy

● Total trainable
params
increases

● PLE doesn’t
need to reside in
device memory

● Cached in RAM

https://ai.google.dev/gemma/docs/gemma-3n

bl
oc

k1

bl
oc

k2

bl
oc

k3

https://ai.google.dev/gemma/docs/gemma-3n

Gemma 3n (cont)

MatFormers in
Gemma3n

● Nested submodels
● Applied only to FFN

layers
● A single submodel

for high latency
requirement use
cases

https://arxiv.org/pdf/2310.07707

https://arxiv.org/pdf/2310.07707

Gemma 3n (cont)

KV Sharing

● First half of the layers calculate
KV cache.

● Rest use the cache from the last
layer.

● Prefill cost reduced to half

https://arxiv.org/pdf/2405.05254

https://arxiv.org/pdf/2405.05254

http://drive.google.com/file/d/1lFK2j4HWkYHJ1Zk3Hb3tzsWLQbEYbRgt/view

Interesting architecture updates from other open models.

Mixture of experts

● Improved accuracy
at same flops

● Increased memory
requirements

● Lower latency
● Load-balanced

experts

Multi-head Latent Attention

https://arxiv.org/pdf/2405.04434

● Significant KV cache savings
while maintaining accuracy

● are cached

KV cache =

we get kv cache savings, if

https://arxiv.org/pdf/2405.04434

Thanks!

