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[Image Credit: Cremer Lab @ ISTA]  

What triggers grooming behaviors in ants as a collective hygiene policy? 



Why causal models?

Observational data  + causal model predict the result of randomized studies [1] 

3[1] “Causal Discovery with Additive Noise Models”, Peters et al., JMLR 2014; 
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Learning the graph

observe 

infer 

Causal 
Discovery

“Score matching enables causal discovery of non-linear additive noise models”, Rolland, Cevher, Kleindessner, Russel, Schölkopf, Janzing, L; ICML 2022

100X speedup

The discovery of the causal order converges linearly as 



Data

5[Image Credit: rxrx1 Dataset, www.esa.int/, ISTAnt dataset]  

http://www.esa.int/
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Image Credit: ChatGPT

● Prediction-powered causal inference
● Exploratory causal inference
● Beyond “standard” causal models



What do we want?
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Causal estimand that is statistically identified on causal variables is also 
identifiable from the representation

Idea: Representation should make it easier/possible to extract causal 
information with some downstream estimator

“The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations”, Yao* and Huang*, Cadei, Zhang, L; NeurIPS 2025 



Measurement perspective of CRL and identifiability

8
[1] “Learning the structure of linear latent variable models” R. Silva, R. Scheines, C. Glymour, P. Spirtes, and D. M. Chickering. JMLR, 2006
[2] “The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations”, Yao* and Huang*, Cadei, Zhang, L; NeurIPS 2025 

When is a learned representation a valid proxy for a 
causal variable? “measurement models” [1]

[3] “Self-supervised Representation Learning Provably Isolates Content From Style”, von Kügelgen*, Sharma*, Gresele*, Brendel, Schölkopf+, Besserve+, L+ NeurIPS 2021

Conditions for causal validity of 
downstream estimate [2]:

● Know
● Estimate is invariant to 
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Exemplary pipeline in experimental ecology
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ISTAnt dataset

What? First benchmark to estimate causal effects from real world ecological 
videos collected in a randomized controlled trial.
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“Smoke and Mirrors in Causal Downstream Tasks”, R. Cadei, L. Lindorfer, S. Cremer, C. Schmid, L; NeurIPS 2024



Other benchmarks stop at validating statistical accuracy. We estimate causal 
effects from real world ecological videos collected in a randomized controlled trial
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Why is it unique? 

RCT 
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A measurement perspective on the problem

Errors come from: 
● Selection bias: which samples are labelled?
● Pre-training data
● Discretization bias
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Problem 1: What data to label?

TE
RB

Implication: Sampling choice matters, but random sampling is not always possible



Optimize for invariance in unified CRL
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They belong to the same 
equivalence class

Two vectors have the same 
projection onto the quotient 
induced by the equivalence 
relationship

How? Assume access to multiple non-i.i.d. groups of sample. All samples in the same 
group are equivalent in some sense

Why? Because you believe isolating these invariances is relevant to a task
“Unifying Causal Representation Learning with the Invariance Principle” D. Yao, D. Rancati, R. Cadei, M. Fumero, L; ICLR 2025



Key idea for unified CRL: invariance principle 

15“Unifying Causal Representation Learning with the Invariance Principle” D. Yao, D. Rancati, R. Cadei, M. Fumero, L; ICLR 2025



Key idea for unified CRL: learning

● Invariance Constraint:  

● Sufficiency Constraint:  

● Result: Smooth encoders satisfying the two 
constraints block-identify invariant components 

Unify using a single “language” 31 different identification results from 28 paper! 
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Debiasing with CRL and the invariance principle
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Biased design from 
selection bias

Debiased causal 
conclusion w/ CRL

Idea: Assume invariant representation across experiment settings
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A measurement perspective on the problem

Errors come from: 
● Selection bias: which samples are labelled?
● Pre-training data
● Discretization bias
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Implication: Models have different TERB and accuracy is not a good indicator of 
downstream causal performance. TEB on validation data works best

Problem 2: model choice
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Selecting valid measurements with T-Mex

Conditions for causal validity of 
downstream estimator:
●  
● Estimator is invariant to 

X

Note: T-Mex doesn’t need data to 
follow trial distribution (as long as 
the conditional indep. still holds)

“The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations”, Yao* and Huang*, Cadei, Zhang, L; NeurIPS 2025 
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Problem 3: Postprocessing

A common choice in ML is to threshold the predictions to make them binary.

Theorem [informal]: This choice can introduce bias.

T-test rejects null hypothesis with p~10^-25
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How do we optimize for validity

Thm: Conditional calibration                                            implies valid estimates with 
correct confidence intervals using AIPW. Conditional independence of the 
measurement model implies conditional calibration.

“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurIPS 2025
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Zero-shot transfer across experiments

“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurIPS 2025
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Validity across experiments

Conditions for causal validity of 
downstream estimate:

● Know
● Estimate is invariant to 

Thm: if a representation is valid on a training experiment and transfers to a target 
experiment while satisfying                            , then it remains causally valid.

“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurIPS 2025
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33% confidence interval overlap
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Results

Treatment increases effect Treatment decreases effect 
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“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurIPS 2025



Exploratory causal inference
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Exploratory causal inference

X

“Exploratory Causal Inference in SAEnce”, Mencattini*, Cadei*, L. Preprint 2025
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Deep networks as data-driven measurement devices

“Exploratory Causal Inference in SAEnce”, Mencattini*, Cadei*, L. Preprint 2025



29

Hypothesis testing challenges: the paradox of ECI

Idea: With powerful tests (strong effects or large sample sizes), all correlations are 
statistically significant. Small entanglement → all neurons are individual effects.

NES: Consistent recursive testing procedure that corrects the entanglement from 
previously discovered hypotheses.

“Exploratory Causal Inference in SAEnce”, Mencattini*, Cadei*, L. Preprint 2025
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Results on synthetic trials 
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Results on synthetic trials 
Paradox of ECI: Precision collapses w/ powerful tests
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Results on synthetic trials 
NES is robust and works well



33

Results on synthetic trials 
If r is known, NES does not miss effects
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Results on ISTAnt 



Beyond “standard” causal models
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Temporal dynamics

https://docs.google.com/file/d/1CiZ2mVfbU6I39NGRx1IAilbXJALMcKxP/preview
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Dynamical systems as causal models

System of coupled differential equations modeling physical mechanisms 
responsible for time evolution

Future states are “caused” by immediate past

Unclear to which extent these can be learned from data for non-linear systems

For the equation to have causal meaning, f must be a causal mechanism (i.e., 
interventions are well defined and align with physical experiments)
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ML methodologies

PINNs

Raissi et al., 2019

SINDy

Brunton et al., 2016

NeuralODE

Chen et al., 2018

● Constrain evolution 
prediction to follow physics 

● Embeds physics implicitly 
via loss

● Discover governing equation 
regressing time derivatives 
onto basis functions

● No learned representations

● Reconstruct time derivatives

● Embed network in solver to 
predict next states

● Train by reconstruction error



Model Architecture
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Parameterize equation as a combination of learnable coefficients 
parameterized by deep neural networks. Trained fully end-to-end.

“Mechanistic Neural Networks for scientific ML” Pervez, L, Gavves.  ICML 2024
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Direct least squares solution

● Linear system

● M is a banded symmetric matrix → solver with linear time and 
space complexity

● In both cases, we also need to derive the backward gradients for GPU 
implementation

“Scalable mechanistic neural networks”, Chen, Yao, Pervez, Alistarh, L. ICLR 2025



Long term sea surface temperature forecasting

Implication: Better solver immediately improves scalability without affecting accuracy

“Scalable mechanistic neural networks”, Chen, Yao, Pervez, Alistarh, L. ICLR 2025



CRL recipes also extend to dynamical systems

42
“Marrying Causal Representation Learning with Dynamical Systems for Science”, Yao, Muller, L; NeurIPS 2024
 “The arctic has warmed nearly four times faster than the globe since 1979”, Rantanen et al., Nature Communications Earth & Environment 2022.
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PDE extension: Ginzburg-Landau Reaction Diffusion

“Mechanistic PDE Networks for discovery of governing equations” Pervez, Gavves, L.  ICML 2025

https://docs.google.com/file/d/1x4bVJhuwg16ZhZO8_HMHtATBl6D77GtG/preview
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Application: Modeling cell differentiation

Image credit: Wikipedia (Cellular Differentiation)
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Application: Modeling cell differentiation

“Learning Explicit Single-Cell Dynamics Using ODE Representations”, von Bassewitz, Pervez, Fumero, Robinson, Karaletsos, L. Preprint 2025
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Performance

“Learning Explicit Single-Cell Dynamics Using ODE Representations”, von Bassewitz, Pervez, Fumero, Robinson, Karaletsos, L. Preprint 2025
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Discovering GRN

“Learning Explicit Single-Cell Dynamics Using ODE Representations”, von Bassewitz, Pervez, Fumero, Robinson, Karaletsos, L. Preprint 2025



Concluding remarks
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Discussion

● ML has a great opportunity in powering causal analysis with key 
applications in scientific discovery but causal questions are subtle

● Chasing predictive accuracy may not lead to more accurate causal 
conclusions. In AI4Science, scientific questions should be part of the 
benchmark (especially if they are causal)

● Seeing the hidden world requires assumptions that the statistical 
causality language can describe 

● CRL: Representation that makes it easier/ possible to extract causal 
information with some downstream estimator
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Thanks!

I’m hiring PhD 
students and  
PostDocs!

You?


