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Why causal models?

+ causal model predict the result of randomized studies [1]

P(Xy, X)) = [ P(XGPA)
l )
P(Xy,...,Xnldo(X; = 2)) = || P(X:|PA:)I(X; = )
V7]

[1] “Causal Discovery with Additive Noise Models”, Peters et al., JMLR 2074;
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“Score matching enables causal discovery of non-linear additive noise models”, Rolland, Cevher, Kleindessner, Russel, Scholkopf, Janzing, L; ICML 2022
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[Image Credit: rxrx1 Dataset, www.esa.int/, ISTAnt dataset]


http://www.esa.int/

Prediction-powered causal inference
Exploratory causal inference
Beyond “standard” causal models

- Image Credit: ChatGPT
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What do we want?

[ P(x:PA;)
Lo
P(Xy,...,Xnldo(X; = z)) = | | P(X;|PA;)6(X; = )
| i
= P(Xv\{j,pa,}|X; =z, Xpa,)P(XPpa,)

Causal estimand that is statistically identified on causal variables is also
identifiable from the representation

Idea: Representation should make it easier/possible to extract causal
information with some downstream estimator

“The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations”, Yao* and Huang*, Cadei, Zhang, L; NeurIPS 2025



Measurement perspective of CRL and identifiability

When is a learned representation a valid proxy for a
causal variable? “measurement models” [1]

&

Conditions for causal validity of
downstream estimate [2]:

o KNOW Z,, 1L Z;|Znp s

e Estimateisinvariantto h

[1] “Learning the structure of linear latent variable models” R. Silva, R. Scheines, C. Glymour, P. Spirtes, and D. M. Chickering. JMLR, 2006
[2] “The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations”, Yao* and Huang*, Cadei, Zhang, L; NeurlPS 2025
[3] “Self-supervised Representation Learning Provably Isolates Content From Style”, von Kuigelgen*, Sharma*, Gresele*, Brendel, Scholkopf+, Besserve+, L+ NeurlPS 2021



Exemplary pipeline in experimental ecology

Cor.\t.rol Grou'p Treated Group
Batch: 2, Position: 4, Time: 2m30s Batch: 1, Position: 6, Time: 2m45s

Design and perform experiment

Collect data




ISTAnt dataset

No grooming

Blue to Focal
grooming

What? First benchmark to estimate causal effects from real world ecological
videos collected in a randomized controlled trial.

“Smoke and Mirrors in Causal Downstream Tasks”, R. Cadei, L. Lindorfer, S. Cremer, C. Schmid, L; NeurlPS 2024
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Why is it unique?

Other benchmarks stop at validating statistical accuracy. We estimate causal
effects from real world ecological videos collected in a randomized controlled trial

ATE = E|Y |do(T

AD :

_E[Y|do(T = 0))].

RCT

Y| T = 0].
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A measurement perspective on the problem

&

OR

o

TEB := | Exjao(r=1)[f(X)] = Eyjao(r=1)[Y] | = | Exjao(r=0)[f (X)] = Evjao(r—0)[Y]

WV "
Interventional Bias under Treatment Interventional Bias under Control

Errors come from:
e Selection bias: which samples are labelled?
e Pre-training data
e Discretization bias



Problem 1: What data to label?

Few annotations (|Ds| < |D,|)
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Random Experiment Position

Implication: Sampling choice matters, but random sampling is not always possible



Optimize for invariance in unified CRL

((za) = 1(za)| |24 ~, 24

S

(Two vectors have the same) (They belong to the same
projection onto the quotient equivalence class

induced by the equivalence -
(elationship )

How? Assume access to multiple non-i.i.d. groups of sample. All samples in the same
group are equivalent in some sense

Why? Because you believe isolating these invariances is relevant to a task

“Unifying Causal Representation Learning with the Invariance Principle” D. Yao, D. Rancati, R. Cadei, M. Fumero, L; ICLR 2025 14



Key idea for unified CRL: invariance principle
W(za) =1(Za) & 24 ~, ZA.

Ar={3,4) Ay = {1}

- @@ @@}@ @@g@@@

“Unifying Causal Representation Learning with the Invariance Principle” D. Yao, D. Rancati, R. Cadei, M. Fumero, L; ICLR 2025
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Key idea for unified CRL: learning

Invariance Constraint:
g1 (x*):- o g2 (x7)-,

aa (~2) (o PP 921

Unify using a single “language” 31 different identification results from 28 paper!

gs

I(zf, 00 (x5), ) = H(a§,) k=23

Result: Smooth encoders satisfying the two
constraints block-identify invariant components

b~ )




Debiasing with CRL and the invariance principle
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Idea: Assume invariant representation across experiment settings



A measurement perspective on the problem

woee
Y

TEB := \@EXMO(T:U[]“(X)] — Ey|do(T:1)[Y1 — | Exjdo(r=0) Lf(X)] = Ey|do(r=0) [Yl

WV "
Interventional Bias under Treatment Interventional Bias under Control

Errors come from:
e Selection bias: which samples are labelled?
e Pre-training data
e Discretization bias
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TERB

Problem 2: model choice
061 o cCLPVITL
CLIP-VIT-S
0.4 DINOV2 -~
@ MAE Oog Q
o VIT-L ",
a - ‘ r
021 o wviTs Y g:
0.0 5?&
&
021 »
. [
—-0.4 1 s: .5
L @®
—0.61 2ey
0.75 0.80 0.85 0.90 0.95

Balanced Accuracy

BCE LosSy

Accuracyys 1 =0.55

Bal. Accuracy,g

ITEB|var q -

Accuracyp 4 -0.!

Bal. Accuracyp

|TEB|p

1.00

0.75

- 0.50

- 0.25

- 0.00

|
o
[N)
un

|
o
)
o

-0.75

-1.00

Implication: Models have different TERB and accuracy is not a good indicator of

downstream causal performance. TEB on validation data works best

Spearman rank-order correlation
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Selecting valid measurements with T-Mex

Conditions for causal validity of
downstream estimator:

@ ’ ® 7, UZi|Zpnn

M e FEstimatorisinvariantto h

W 50

< Note: T-Mex doesn't need data to
~100 follow trial distribution (as long as

n " the conditional indep. still holds)
T-MEX

“The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations”, Yao* and Huang*, Cadei, Zhang, L; NeurlPS 2025
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Problem 3: Postprocessing

A common choice in ML is to threshold the predictions to make them binary.

Theorem [informal]: This choice can introduce bias.

Ho : E[[TEB(f)|] = E[|TEB(Lj0.5,1(f))] vs Hi:E[TEB(f)|] < E[TEB(Ljg.5,1(f))]]

T-test rejects null hypothesis with p~10*-25

21



How do we optimize for validity

woee
Y

TEB := EEX|do(T:1)[f<X)] — ]Ey|do(T:1)[Yl — | Exjdo(r=0) Lf(X)] = Ey|do(r=0) [Yl

WV "
Interventional Bias under Treatment Interventional Bias under Control

Thm: Conditional calibration E[Y — f(X)|W, T] = 0implies valid estimates with
correct confidence intervals using AIPW. Conditional independence of the
measurement model implies conditional calibration.

22
“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurlPS 2025



Zero-shot transfer across experiments

“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurlPS 2025
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Validity across experiments

A i
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A Conditions for causal validity of
min  Epe; [£ (Y, ho ¢(X))] downstream estimate:
h,¢ o KNnow Za, UZ;|Zpp g
S.t ¢(X) 1L ZIY =y ‘v’y = y e Estimateisinvariantto h

Thm: if a representation is valid on a training experiment and transfers to a target
experiment while satisfying ¢(X) L Z|Y =y, then it remains causally valid.

“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurlPS 2025
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Results
33% confidence interval overlap
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“Prediction-Powered Causal Inference”, Cadei, Demirel, De Bartolomeis, Lindorfer, Cremer, Schmid, L; NeurlPS 2025



Exploratory causal inference
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Exploratory causal inference

"Exploratory Causal Inference in SAEnce”, Mencattini*, Cadei*, L. Preprint 2025
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Deep networks as data-driven measurement devices

(©068)

feI°] JoI I')

Exploratory Causa

[

Inference in SAEnc

e

", Mencattini*, Cadei*, L. Preprint 2025

Interpretability K%
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Hypothesis testing challenges: the paradox of ECI

NES: Consistent recursive testing procedure that corrects the entanglement from
previously discovered hypotheses.

1.0
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Number of samples (n) Effect size (k)

Bonferroni FDR — t-test = - Ground truth

Idea: With powerful tests (strong effects or large sample sizes), all correlations are
statistically significant. Small entanglement — all neurons are individual effects.

‘Exploratory Causal Inference in SAEnce”, Mencattini*, Cadei*, L. Preprint 2025
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Results on synthetic trials

Most activated images for Neuron 38

mmm stronger activation (left panel)
weaker activation (left panel)

Most activated images for Neuron 6051

B stronger activation (right panel)
1 weaker activation (right panel)
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Results on synthetic trials
Paradox of ECI: Precision collapses w/ powerful tests
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Results on synthetic trials
NES is robust and works well
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Results on synthetic trials

If ris known, NES does not miss effects
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Results on ISTANnt

Qualitative Interprctation for Neuron 394

Biologist Judgement: grooming \/ Biologist Judgement: grooming / Biologist Judgement: grooming x Biologist Judgement: grooming X

Qualitative Interpretation for Neuron 550

Biologist Judgement: background Biologist Judgement: background Biologist Judgement: background >< Biologist Judgement: background ><

I Max-Activating (Neuron 394) Non-Activating (Neuron 394) NN Max-Activating (Neuron 550) BB Non-Activating (Neuron 550) 34



Beyond “standard” causal models
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Temporal dynamics

36


https://docs.google.com/file/d/1CiZ2mVfbU6I39NGRx1IAilbXJALMcKxP/preview

Dynamical systems as causal models

System of coupled differential equations modeling physical mechanisms
responsible for time evolution

dx
- = R®
g (), =€

Future states are “caused” by immediate past
r(t+dt) =z(t) +dt - f(z())
Unclear to which extent these can be learned from data for non-linear systems

For the equation to have causal meaning, f must be a causal mechanism (i.e.,
interventions are well defined and align with physical experiments)

37



ML methodologies

PINNs

Vorticity

=0 .c.o.-

Raissi et al, 2019

e Constrain evolution
prediction to follow physics

e Embeds physics implicitly
via loss
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I0L Sparse Regression to Solve for Active Terms in the Dynamics
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Brunton et al.,, 2016

Discover governing equation
regressing time derivatives
onto basis functions

No learned representations

Reconstruct time derivatives

NeuralODE

Residual Network ODE Network

/

5

-5 0 5
Input/Hidden/Output Input/Hidden/Output

Chenetal, 2018

Embed network in solver to
predict next states

Train by reconstruction error
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Model Architecture

Parameterize equation as a combination of learnable coefficients
parameterized by deep neural networks. Trained fully end-to-end.

Input Trajectories Reconstruction

Xr
;
N ,:‘" ) ) '
I v-‘ﬂ:,-. {
(o = [cit, Pit, bid]) o A
R TN
60— l iy,
. /"‘;‘ )N
[UX (o) = 0] ARV
g
MNN Block

Ux : Zcti m—l—ngtuu . 50(t, X)) = b(t, X)

N

llnear terms nonlinear terms
“Mechanistic Neural Networks for scientific ML” Pervez, L, Gavves. ICML 2024




Direct least squares solution

| Time Complexity | Space Complexity

Dense Solver o(T3) 0(T?)
Sparse Solver 0(T?) 0(T?)

e Linearsystem » ciw®=b — Az=0
z=(ATA)1ATh
z=M"1p

e M is abanded symmetric matrix — solver with linear time and
space complexity

e In both cases, we also need to derive the backward gradients for GPU
implementation

“Scalable mechanistic neural networks”, Chen, Yao, Pervez, Alistarh, L. ICLR 2025 40




Long term sea surface temperature forecasting

Relative MSE (Mean Squared Error) Time per Epoch [s] GPU Memory Usage [GiB]
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Implication: Better solver immediately improves scalability without affecting accuracy

“Scalable mechanistic neural networks”, Chen, Yao, Pervez, Alistarh, L. ICLR 2025




CRL recipes also extend to dynamical systems

Input Trajectories

Encoder
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-
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‘Marrying Causal Representation Learning with Dynamical Systems for Science”, Yao, Muller, L; NeurlPS 2024
"The arctic has warmed nearly four times faster than the globe since 1979", Rantanen et al., Nature Communications Earth & Environment 2022.
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PDE extension: Ginzburg-Landau Reaction Diffusion

“Mechanistic PDE Networks for discovery of governing equations” Pervez, Gavves, L. ICML 2025
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https://docs.google.com/file/d/1x4bVJhuwg16ZhZO8_HMHtATBl6D77GtG/preview

Application: Modeling cell differentiation
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Epithelial cell

Nerve cell

Image credit: Wikipedia (Cellular Differentiation)

Fat cell

Bone cell

Blood cell
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Application: Modeling cell differentiation

PCA-1(z NODE / FM predicts Cell-MNN predicts
a velocity a linear ODE
/ z = fo(2¢,t1) z = Ag(z,, tl
yA
Ztl.
3] tyal to
Validation: EMD (qfval, Pt analytical solve
o o thz exp[Ag(zt]‘ 7t1) P (tz_tl)] ztl

‘Learning Explicit Single-Cell Dynamics Using ODE Representations”, von Bassewitz, Pervez, Fumero, Robinson, Karaletsos, L. Preprint 2025 °



Performance

Method Cite EB Multi Average |
TrajectoryNet [50] = 0.848 - -
WLF-UOT [39] - 0.800 +0.002 - —
NLSB [27] = 0.777 +o0.021 = =
SB-CFM [52] 1.067 +o0.107  1.221 +o0.380  1.129 +0.363  1.139 +o.077
[SF)2M-Sink [53] 1.054 +o0.087  1.198 +o0342  1.098 +o0.308  1.117 +0.074
[SF]?M-Geo [53] 1.017 0104  0.879 +0.148  1.255 +0.179  1.050 +0.190
I-CFM [52] 0.965 +o0.111 0,872 +0.087  1.085 +0.099  0.974 +o0.107
DSB [14] 0.965 +o0.111  0.862 +o0.023  1.079 o117  0.969 +0.109
I-MFM [24] 0.916 +o0.124  0.822 +0.042  1.053 +0.095  0.930 +o0.116
[SF]2M-Exact [53]  0.920 +0.049  0.793 +0.066  0.933 +0.054  0.882 +0.077
OT-CFM [52] 0.882 +0.058  0.790 +o0.068  0.937 +0.054  0.870 +o0.074
DeepRUOT [57]*  0.845 +o0.167  0.776 +0.079  0.919 +0.090  0.846 +0.071
OT-Interpolate* 0.821 +0.004  0.749 +0.019  0.830 +0.053  0.800 +0.044
OT-MFM |[24] 0.724 +o.070 0.713 £0.039  0.890 +0.123  0.776 +0.099
Cell-MNN (ours)*  0.791 +0.022 0.690 +o0.073 0.742 +o0.100 0.741 +0.050

‘Learning Explicit Single-Cell Dynamics Using ODE Representations”, von Bassewitz, Pervez, Fumero, Robinson, Karaletsos, L. Preprint 2025
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Discovering GRN

Target Genes
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Learning Explicit Single-Cell Dynamics Using ODE Representations”, von Bassewitz, Pervez, Fumero, Robinson, Karaletsos, L. Preprint 2025
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Concluding remarks
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Discussion

ML has a great opportunity in powering causal analysis with key
applications in scientific discovery but causal questions are subtle

Chasing predictive accuracy may not lead to more accurate causal
conclusions. In Al4Science, scientific questions should be part of the
benchmark (especially if they are causal)

Seeing the hidden world requires assumptions that the statistical
causality language can describe

CRL: Representation that makes it easier/ possible to extract causal
information with some downstream estimator
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