Training LLIVis: do we understand
our ?

Antonio Orvieto, 2025
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Training loss
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@ DeepMind

Training Compute-Optimal Large Language Models N A B
A
Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, L (N 9 D ) — E + + °

Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, N (X D ﬁ
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,

Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*
*Equal contributions




Let X = (X1, X%y, ..., X7} ~ p(X) be a token sequence from the true data
generating distribution p(X') where x, € V. Let X ., = {Xx, Xy, ..., X, }.

A language model learns the factorization

T—1
p(2;6) = poe) | | PGt | X <12 0)
=1
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Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry
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Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
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Recent estimates and public claims

Here are some of the more recent reported / estimated costs:

Estimated cost (compute
Model / claim only, often) Notes [/ caveats

GPT-4 $78 million (compute) A widely circulated figure.

Visual Capitalist

$80M to $100M  TechRadar Some media estimates

including additional overhead.

GPT-4 (or “the cost") “more than $100M”" (Sam OpenAl has suggested a figure
Altman) Wikipedia +1 above $100M.

Gemini (Google's newer $191 million (for Gemini From a media/Al cost summary.
models) Ultra, claimed)

About Chromebo...

DeepSeek R1 (Chinese $294,000 Reuters A lower cost example, though
model, more efficient) likely for a more optimized or

smaller run.




But...

@ Tengyu Ma & &)

Adam, a 9-yr old optimizer, is the go-to for training LLMs (eg, GPT-3,
OPT, LLAMA).

Introducing Sophia, a new optimizer that is 2x faster than Adam on

LLMs. Just a few more lines of code could cut your costs from $2M to
$1M (if scaling laws hold).
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Spoiler: this was 2.5 years ago, we still use Adam



What does theory say? (Jiang et al., 2025)

Under Assumptions 1-4a, it 1s known that SGD, with an appropriately chosen step size, can find
[VF(w)||3] < € after at most O (L(F(wl)[F*)az | L(F(wlg)_F*)) itera-

€ €

tions (Ghadimi and Lan, 2013; Bottou et al., 2018). Moreover, this complexity matches the lower
bound for any first-order method up to an absolute constant, as shown by Arjevani et al. (2023).

According to this classical convergence theory, SGD is the optimal first-order method in this
setting 1n the worst-case sense, leaving no room for further improvement.

a point w such that £ [

* this is a bit of a simplification, see e.g. (L, L) smoothness, and Jiang et. al 25



Outline

 Introduction: what is Adam?

* Introduction 2: History class: why do we use Adam over SGD?
+ a tiny bit of Muon for the fans.

» Why is this understanding optimizer gaps important for LLMs future.
» Core:

» Part 1: large ablation of Optimizer Gaps on LMSs.

» Part 2: insights and new interpretations of Adam.

» A surprise, for everyone (especially me, shock).
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REVISITING ASSOCIATIVE RECALL IN MODERN
RECURRENT MODELS

Destiny Okpekpe & Antonio Orvieto
Max Planck Institute for Intelligent Systems
ELLIS Institute Tiibingen

Tiibingen AI Center
{destiny,antonio}@tue.ellis.eu

In Search of Adam’s Secret Sauce

Antonio Orvieto * Robert Gower
ELLIS Institute Tiibingen, MPI-IS Flatiron Institute
Tiibingen AI Center, Germany New York, US

—

Is your batch size the problem? Revisiting the
Adam-SGD gap in language modeling

Teodora Sreckovi¢; Jonas Geiping, Antonio Orvieto
Max Planck Institute for Intelligent Systems
ELLIS Institute Tiibingen, Tiibingen Al Center

Motivation: why are we not
satisfied with Adam

My obsession this spring

The surprise



optimizer = torch.optim.Adam(params, 1r=0.001, betas=(0.9, 0.999), eps=1e-08)

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba*
University of Amsterdam, OpenAl University of Toronto
dpkingma@openai.com jimmy@psi.utoronto.ca

\

N _

most important -atter gplvrezer
of the last twenty years?

.

Cited > 220k times!
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Test of Time

Adam: A Method for Stochastic Optimization
Diederik P. Kingma, Jimmy Ba
https://arxiv.org/abs/1412.6980

As one of the most widely adopted optimization algorithms in deep learning, Adam revolutionized
neural network training, enabling significantly faster convergence and more stable training across a
wide variety of architectures and tasks. The algorithm automatically adjusts parameter-specific

learning rates based on first and second moments of gradients, handling sparse gradients and non- Careful NOW nOt the beSt
. . . , . _ . . ) J
stationary objectives. Adam'’s practical success has made it the default optimizer for countless state-of-

the-art models, from computer vision and natural language processing to reinforcement learning, Vlrtuosrty 1S fOr the arrogant'

demonstrating remarkable versatility across problem domains and neural network architectures. .

12 Quote from ‘The Young Pope’ by Sorrentino, Episode 2

| Te— I



optimizer = torch.optim.Adam(params, 1r=0.001, betas=(0.9, 0.999), eps=1e-08)

w;

Update of i-th weight

lr=0.001 eps=1e-08
k+1 _ . ok T k
Wi =W = m, <+ SGD with momentum
_— \/ij + ¢ and scaled stepsize

pbeta 1=0.9

Usually, update is
INn vector form, wit

ml.k+1 = ml.k + (1 = 5)) VZ-L(WkH) <+ Momentum update

V; T = P> Vot (1 —=p,) V. L(w T ) <+-Scaling factor update

written \ mio = V.L(w"°)

h beta 2=0.999

element-wise divisions Vi() — Vl-L(wO)z

and multiplications.
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In a nutshell..

l

mk = EMA,, [V,Lwh)], vE= EMAg, [ V,L(wbY]

d
Wik_l_1 — Wik o m ik
k
\/; TE€ EMA: exponential moving average
Setting /, to 0 (ho momentum)
H 1
wtl =k~ Vl-L(Wik) we get

l l : :
\/;ik 1 e (Tieleman, Hinton, 2012)
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Effect of EMA
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Moving averages are slower
as [} parameters increase.

p ~ 0.5 acts here as denoising.

Higher /f produce more delay
but smoother output signal.

Very high [s yield extremely
resilient variation in output.

Ultimately, all of this depends
on the speed at which input signal
changes.



Why is it particularly crucial?
Attention is dominating everything!

GPT-4 Technical Report

Published as a conference paper at ICLR 2021

OpenATI*

AN IMAGE IS WORTH 16X16 WORDS:
Abstract TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and produce text outputs. While less capable than
humans in many real-world scenarios, GPT-4 exhibits human-level performance

Graph Transformer Networks

Alexey Dosovitskiy*T, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,

Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang® , Hyunwoo J. Kim*

on various professional and academic benchmarks, including passing a simulated
bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-
based model pre-trained to predict the next token in a document. The post-training
alignment process results in improved performance on measures of factuality and
adherence to desired behavior. A core component of this project was developing
infrastructure and optimization methods that behave predictably across a wide
range of scales. This allowed us to accurately predict some aspects of GPT-4’s
performance based on models trained with no more than 1/1,000th the compute of
GPT-4.

Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*'f
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

Department of Computer Science and Engineering
Korea University
{ysj5419, minbyuljeong, rachyun, kangj, hyunwoojkim } @korea.ac.kr

Text: sequence of Image: “sequence” of Graph: “sequence” of
words pixel patches. nodes.
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Validation Loss

On Layer Normalization in the Transformer Architecture

~2020

Ruibin Xiong'™ !? Yunchang Yang™ ® Di He*> Kai Zheng? Shuxin Zheng> Chen Xing® Huishuai Zhang?
Yanyan Lan'? Liwei Wang*® Tie-Yan Liu°
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- PostLN transformers are hard to train, you need warmup

- .. and Adam! No Adam no party.
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The Attention Mechanism (layer ¢)

A’ = softmax LXL” Wer (X W)
Va
Zz/” — AKXKWV’K \

Keys, queries, keys dimensions

( XW,WeXT
softmax

Nz

Yf — G(waFl,f)WFz,f

W<, WX have a role completely different from W', Wi W
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I n t ra n SfO rm e rS y Ad a m ad a ptS tO Why Transformers Need Adam: A Hessian Perspective G OOd m Od e r n
different needs (curvatures) of aper! (2024)
parameter groups: PApEr

dingtian@sribd.cn, sunruoyu@cuhk.edu.cn, luozq@cuhk.edu.cn
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Figure 3: (a) (¢): The blockwise Hessian spectra of VGG16 (CNN) and BERT (Transformer) at
initialization. The x-axis records the eigenvalues and the y-axis records the frequency in the log scale.
To allow comparison 1n the same figure, we sample 4 blocks in each model. The plotted spectra are
normalized by their 10th largest eigenvalues. The spectra are similar among blocks for VGG and

differ significantly across blocks for BERT. (b) (d) Adam v.s. SGD for training VGG16 and BERT.

Observation 1: For all Transformers we checked, the blockwise Hessian spectra are largely different
from each other. In contrast, the blockwise Hessian spectra of CNNs are similar.

19



3.0 3.0

transformer.wpe --

transformer.h.0.attn.c_attn -..

transformer.h.0.In_2 —-

3.0 embedding.token -.
embedding.segment -. .

-

layerl.0.convl -

- encoder.0.query -
layerl.0.conv2 25 anld ... 25 nansformenh.o.mlp.c_proj-...- 25
layerl.1.convl - encoder.0.key - .. transformer.h.1.attn.c_attn -.. .-
layerl.1l.conv2 - encoder.0.value -.. . - transformer.h.1.In_2 -- -. .
A : wanstomern. 1o v N O 28
'ayerz‘O’conV1_ enCOder‘o.OUtlet-“near-..- .. 20 peer
20 wanstomern2 e s [ I 10 N I 1 A O
ey | | | [ .
ety I | [ [ |
layer2.1.convl - encoder.0.fc2 -
- s RSP | [ | | [ | | [ | s
layer2.1.conv2 - s encoder.1.query -.- --.... transformer.h.3.attn.c_attn —.......-.
. | | | | o W [ [ [ ey B BT
layer3.0.conv2 _. .-... transformer.h.3.m|p.c_proj-.. . -. “1.0
encoder.1l.value - -1.0 i
avers.con - NN A wranstormer:n.oen.c_otn- [ N N N I I I
£ 1.0 encoder.l.output_linear -
- wansomern.a 2 [0 I A
layer3.1.conv2 -.
encoder.1.fcl- transformer.h.4.mlp.c_proj -. . ... .
avers.0.conv1 - [ I E N RN
avera.0.conv2 - I I L I I I I
. | | [ [ [ [ [ esenensn: l EEC AR EEEE
e | | ———— | T LI
e L N AHEEEN NN NN W
v .conc -5 I O O I - - - N FEE S
€ £ o2 2 8 E o N > o» O E oo o = ok $ 8% £ 5% £ 5 %8 £ 5% < 5§ % £ 8§ 3% £ 5
¢ § § & 2 § & & § £ 2 § & & § 3 s J o Jdd A d R Y Y Ed Y Y YA
fc - = o g x ® 2 : : S X © e - : 2 e g Y 2 T u ! ? Y ! T Q 4 2 Y A P9 ! d
8 E g ¢ 5 £ © © 73 4 3 £ =« 4 £ £ E E £ & g £ & g £ & g £ & ¢ £ 8 ¢ £ &
' g 1 0 i 1 g i 0 0 1 0 i 0 0 1 0 1 o g o o =] o ] o — i - ! o} o U £ 5 = © &€ ¥ & E § © &€ ¥ § E ¥ © &€ ¥ § E
— — o~ — o~ - o~ — o~ — o~ — o~ — o — o~ ey c ] - - 3 ° o . I~ > o o ] = w : 5 . 1 : i J 5 s 3 : 3
> 5 5 3 5 3 5 3 S5 3 S 3 5 03 5 3 5 0« 5 o & o & & § & § 8 g &2 s § g 5 o E e - z z o E ¢ om £ P E T E 2
c c c c cE € € c € c € € c c cE € € ° c T e 3 5 2 g T g 3 > 2 2 3 h s £ @0 - £ 8 - £ O . £ O - £ © . £ 9 )
o o =) o c o o =) o c o o c o o o o 2 5 et < o <] o o o c o o o o c © 5 =« B 3 = @ g = B g = @ g = B g = @ g
© ¢ ¢ ¢ U ¢ U U 9 v 9 © v 9 o© o U 8 2 Y ¢ g g ¢ e 4 2 £ 2 ¢ ¢ 2 € ¢ g ¢ ¢ ¢ c ¢ ¥ c ¢ 2 c ¢
S 6 A 4 86 6 4 4 6 o d 4 S o o o E g © g = ] g L o E g EEESEECECEEGSEEETCEEECEE
W 4 A H N N N N M oM oMo oM o o S o v g o E s ¥ & 5 T L s e s T L s e s T8
- — ™ - — ™ — - — - e [ - el - - 1 © ° o G D 5 b 5 D G 6 % a5 s
g o o ¢ 9 ¢ @ I @ v © ¢ 9 @ o 0 7] ] S c c £ & S & S e S < s & s
> 0> > 3> 3 x> ™ > A A ™ > > > > g e a e © P& S © [C S & o
& &8 &8 8 8§ &8 8 &8 8 8 8 8 08 8 8 8 ] o = 5 5 5 5 5 5 s 5 5 & =

(c) GPT2-nano

(a) ResNetl8 (b) BERT

3.0 3.0

wte -JJii

3.0

patch_embed.proj -

features.0 -.
h.0.attn.wq -..
features.2 .. blocks.0.attn.qkv .. h.0.attn.wk -l I
h.0.attn.wv -
s SR — oo SN
e [ I e | W s —
.0.mlp.c_proj -
features.10 -...-. blocks.0.mlp.fc2 _-...- >0 h.3.attn.wq -. .
’ h.3.attn.wk -} B -2.0
-2.0
features.12 -...... blocks.6.attn.qkv _-....- h.3.attn.wv -.. .
- h.3.attn.wo -
- - e
v 5 i B Eom Em
. s S O - |
s ool "a
o S e
o 5 O i
- - SEmm Ea=mm
t . -
- sty | [ | | [ BN [ [ | .~ N T
e 5 O O e e
s O o EEEEEEEEEE mEEESS
v 5 O o SNSEEEENES EEEESS
e oo [ HEH B - EEEEE
: . havattn.wo NI = ===== =.
s> | | H NN NN EEEE - |l HIHHN HHEHEN BN
e AN AR EE R I e et b L bbb et
LD - - = = w - = 4 W —_ —_ oy, oy
| ' ' ' [ 1 | 1 O O ' | I | 1 1 ggg‘—g’g’ g gg—g‘g g—g’g’g %gé;%ﬁlg;"é;gﬁlgg%;gﬁlggéggflg
2% 9% 29 I8 28I 88 GCTY - =TT S S-S S N B R SEREFSERRE S iR E s E N T
E 5 5 5 ¢ ¢ 8 6 8 ¢ ¢ 8 8 £ ¢ £ 2 0g g £ 08 g g ¢ ¢ 0% % O¢%Y SccoffmmmmeEtannn EES A5 ¢
8888%%%%%%%%%3££ g 38 3 & s 3 3 8 8 3%5 g zcz:;q:cz:;ﬁc:zc;,{éﬁﬁs*g:i
ST s S g 2 o @gog g og g g @ v T T g = = < 3 5 2 2 = < < £ -

(d) VGGI16 (e) ViT-base (f) GPT2

Figure 4: The JS distance among blockwise Hessian spectra at initialization. We find that the JS
distance of blockwise spectra in CNNSs 1s significantly smaller than that in Transformers.
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Why are Adaptive Methods Good

: 4
NOISE IS NOT THE MAIN FACTOR BEHIND THE GAP for Attention Models:
BETWEEN SGD AND ADAM ON TRANSFORMERS, BUT
S IG N D E S CENT M I GHT B E Jingzhao Zhang Sai Praneeth Karimireddy Andreas Veit
MIT EPFL Google Research
jzhzhang@mit.edu sai.karimireddy@epfl.ch aveit@google.com
Frederik Kunstner, Jacques Chen, J. Wilder Lavington & Mark Schmidt'
University of British Columbia, Canada CIFAR AI Chair (Amii)f Seungyeon Kim Sashank Reddi Sanjiv Kumar
{kunstner, jola2372, schmidtm}@cs.ubc.ca Googligesearfh (;‘;zkglg Resef‘mh G.(,’oilg Reselamh
. seungyeonk@google.com sas google.com sanjivk@google.com
jacquesc@students.cs.ubc.ca
Suvrit Sra
MIT

suvrit@mit.edu

Heavy-Tailed Class Imbalance

and Why Adam Outperforms Gradient Descent on Language Models

Why Transformers Need Adam: A Hessian Perspective

Frederik Kunstner ! Robin Yadav'! Alan Milligan'! Mark Schmidt'? Alberto Bietti?

Yushun Zhang'?, Congliang Chen'?, Tian Ding?, Ziniu Li'?, Ruoyu Sun'?*, Zhi-Quan Luo'?
1The Chinese University of Hong Kong, Shenzhen, China
2Shenzhen Research Institute of Big Data

{yushunzhang,congliangchen,ziniuli}@link.cuhk.edu.cn

. dingtian@sribd.cn, Qcuhk.edu.cn, 1 Qcuhk.edu.
Toward Understanding Why Adam Converges Faster Than SGD for 1ngtiandsribd.cn, sunruoyudcuhk.edu.cn, luozqBcuhk.edu.cn

Transformers

Yan Pan YPAN2 @ ANDREW.CMU.EDU

Yuanzhi Li YUANZHIL @ ANDREW.CMU.EDU J u St tO n am e a feW. .

Carnegie Mellon University
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However, If you look back to 2017..

The Marginal Value of Adaptive Gradient Methods
in Machine Learning

Ashia C. Wilson!, Rebecca Roelofs!, Mitchell Stern, Nathan Srebro’, and Benjamin Recht*
{ashia,roelofs,mitchell}@berkeley.edu, nati@ttic.edu, brecht@berkeley.edu

Abstract

Adaptive optimization methods, which perform local optimization with a metric
constructed from the history of iterates, are becoming increasingly popular for
training deep neural networks. Examples include AdaGrad, RMSProp, and Adam.
We show that for simple overparameterized problems, adaptive methods often find
drastically different solutions than gradient descent (GD) or stochastic gradient
descent (SGD). We construct an illustrative binary classification problem where
the data 1s linearly separable, GD and SGD achieve zero test error, and AdaGrad,
Adam, and RMSProp attain test errors arbitrarily close to half. We additionally
study the empirical generalization capability of adaptive methods on several state-
of-the-art deep learning models. We observe that the solutions found by adaptive
methods generalize worse (often significantly worse) than SGD, even when these
solutions have better training performance. These results suggest that practitioners
should reconsider the use of adaptive methods to train neural networks.
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1) 201 5'201 8: ViSiOn peOple trUSted SGD W|th TheMarginal\i’zlll\lfatlil’lﬁialrjgv:ngl;adientMethods
momentum, and thought Adam was fast but
worse at test accuracy

2) At the same time: optimization people started t0 oy 11e conveRGENCE OF ADAM AND BEYOND
think of Adam as a bad optimizer - it does not
converge In some settings.

Sashank J. Reddi, Satyen Kale & Sanjiv Kumar
Google New York

New York, NY 10011, USA

{sashank, satyenkale, sanjivk}@google.com

3) 2018: Loshchilov & Hutter discovered Adam’s DECOUPLED WEIGHT DECAY REGULARIZATION
implementation of L2 regularization was wrong. s s

Freiburg, Germany,

Adam(W) : faSt and generalizes We”. {ilya, fh}@cs.uni-freiburg.de

4) At the same time: Transformers were born, and Adam was
picked as optimizer of choice.
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5) Transformers could be only trained with Adam, yet this
information on NLP was not too interesting for optimization researchers

Why are Adaptive Methods Good
for Attention Models?

6) In 2020 some papers came out claiming heavy tail

- . Jingzhao Zhang Sai Praneeth Karimireddy Andreas Veit
MIT EPFL Google Research
noise in NLP tasks was at the root of success
eeeeeeeee im nk Reddi Sanjiv Kumar
Google Researc Google Research oogle Research
of Adam. For many, case was closed e s m——
' Y; .
Suvrit Sra
MIT
uvrit@mit.edu

/) Around 2021, ViTs took over vision: it was then  axwace s worrs 16x16 woros:

TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

clear : efficient training of transformers is crucial.

Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*:f
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

C— U
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But why is it important to go beyond Adam?



Motivation 1: Adam-SGD gap

Some architectures like
Transformers are only
trainable with adaptive methods

(Adam, Muon, Scion, etc..) do ey | et

What makes such architectures/ (a) VGG16 (b) VGGI16
data unique? What can we learn

—
—

|
from this? Lt W0p R Loy
u 101 w— AdamW
o h 10 —— SGD T
MLP layer / ooy I S | S S 9
Projection o 2nd Query 6
R ° ° Juery Value 10::: h hm H %) 7 -
Why Transformers Need Adam: A Hessian Perspective Key A L >
- 2nd Value € B
MLP | 3 It—E
ayer 5-
ﬂ
Projection — L I | | 4
Yushun Zhang'?, Congliang Chen'2, Tian Ding?, Ziniu Li'?, Ruoyu Sun'?*, Zhi-Quan Luo'? oue § 3rd MLP FC Layer
1The Chinese University of Hong Kong, Shenzhen, China Y Value \ o 3.
2Shenzhen Research Institute of Big Data Key | A
. NP X 104 2 1 , , , : ,
{yushunzhang, congliangchen, ziniuli}€link. cuhk. edu. cn 0 20000 40000 60000 80000 100000 120000 140000

dingtian@sribd.cn, sunruoyu@cuhk.edu.cn, luozq@cuhk.edu.cn lteration

(d) BERT
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Motivation 2: New capabilities

SSD, Scan, Convolution vs Attention time (A100 80GB PCle)

10 3
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An Empirical Study of Mamba-based Language Models

Roger Waleffe!*?* Wonmin Byeon! Duncan Riach! Brandon Norick!"
Vijay Korthikanti! Tri Dao®*?* Albert Gu®® Ali Hatamizadeh! Sudhakar Singh’
Deepak Narayanan! Garvit Kulshreshtha' Vartika Singh! Jared Casper?

Our results show that while pure SSM-based
models match or exceed Transformers on many
tasks, both Mamba and Mamba-2 models lag
behind Transformer models on tasks which

Jan Kautz! Mohammad Shoeybi! Bryan Catanzaro! require strong copying or in-context learning

INVIDIA
‘Together Al

w &~ U o) B

Inference Speedup (X)
N

=

0 20 40 60 80 100 120
Input Context Length (Thousand Tokens)

Figure 5: Predicted speedup to generate
one token for an 8B-parameter Mamba-2-
Hybrid model compared to a Transformer.

2University of Wisconsin-Madison
°Carnegie Mellon University

abilities (e.qg., five-shot MMLU, Phonebook

5 L
Princeton University L ookup) or long-context reasoning.

SCartesia Al

Table 2: Evaluation results for 8B-parameter models trained on 1.1T tokens. Pure SSM models (Mamba
and Mamba-2) match or exceed Transformers on many natural language tasks, but fall short on others

(e.g., MMLU) (see Section 3.3).

: MMLU
Model WinoGrande PIQA HellaSwag ARC-E ARC-C 0-Shot  5.Shot Avg. w/o MMLU  Avg
Transformer 69.22 78.29 75.6 73.15 43.09 38.32 46.28 67.87 60.56
Mamba 68.27 78.89 75.63 75.42 42.15 28.63 28.00 68.07 56.71
Mamba-2 70.8 78.35 75.54 75.13 43.00 28.94 29.19 68.56 57.28

Table 7: Detailed evaluation results on 12 common natural language tasks comparing an 8B-parameter
hybrid model (Mamba-2-Hybrid) with the pure Mamba-2 SSM and Transformer models from Section 3.3
when training for 3.5T tokens. The Mamba-2-Hybrid model achieves the highest overall accuracy and
is 2.65 points better than the Transformer on average.

Model WG  PIQA HellaSwag ARC-E ARC-C O—Shl(\)/f;ML;—JSho ¢ OpenBook TruthFul PubMed RACE NQ  SquadV2 Avg
Transformer 69.14  78.62 75.89 73.27 43.77 45.69  50.07 42.00 35.48 69.20 39.52  15.15 53.4 23.17
Mamba-2 71.59 79.82 77.69 75.93 48.12  47.25 48.7 44.2 35.66 75.2 37.7 17.17 51.9 54.69
Mamba-2-Hybrid  71.27  79.65 77.68 77.23 47.7 51.46 53.60 42.80 38.72 69.80 39.71 17.34 58.67 55.82
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REVISITING ASSOCIATIVE RECALL
IN MODERN RECURRENT MODELS

Destiny Okpekpe & Antonio Orvieto
MPI-IS and ELLIS Institute Tuebingen

"Hakuna Matata means no worries for the rest of your days. Hakuna Matata means ...”

A619CTP1S54D2C—"7

TLDR: SSMs can totally do this as good as attention.
they are just super hard and unstable to train!!!
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¢ Mamba

¢ Attention
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It was all about

optimization from the start!

On the difficulty of training Recurrent Neural Networks

Razvan Pascanu
Universite de Montreal

Tomas Mikolov
Brno University

Yoshua Bengio
Universite de Montreal

PASCANURQ@QIRO.UMONTREAL.CA

T.MIKOLOVQGMAIL.COM

YOSHUA.BENGIO@QUMONTREAL.CA
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Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.



So what about understanding
how to optimize better?

Recall: SSMs are super fast at
Inference, we really want these



Perhaps Muon? @ @

G MUON 1S SCALABLE FOR LLM TRAINING
Practical Efficiency of Muon for Pretraining

TECHNICAL REPORT

Jingyuan Liu' Jianlin Su’ Xingcheng Yao? Zhejun Jiang' Guokun Lai’ Yulun Du!
Yidao Qin' Weixin Xu! Enzhe Lu' Junjie Yan! Yanru Chen! Huabin Zheng! Essential Al
Yibo Liu' Shaowei Liu! Bohong Yin! Weiran He! Han Zhu' Yuzhi Wang!

Jianzhou Wang! Mengnan Dong’ Zheng Zhang' Yongsheng Kang! Hao Zhang! San Francisco, CA .
Xinran Xu! Yutao Zhang! Yuxin Wu' Xinyu Zhou'! * Zhilin Yang' research@essential.ai
1 Moonshot AI 2 UCLA
3.0
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Perhaps Muon/Scion? @ @

G MUON 1S SCALABLE FOR LLM TRAINING
Practical Efficiency of Muon for Pretraining

TECHNICAL REPORT

Jingyuan Liu' Jianlin Su’ Xingcheng Yao? Zhejun Jiang' Guokun Lai’ Yulun Du!
Yidao Qin' Weixin Xu! Enzhe Lu' Junjie Yan! Yanru Chen! Huabin Zheng! tial AT
Yibo Liu'! Shaowei Liu'! Bohong Yin! i
Jianzhou Wang' Mengnan Dong! Zheng Zha
Xinran Xu' Yutao Zhang'! Yuxin Wul

Francisco, CA
ch@essential.ail

Yet Muon implementations reduce to
Adam on many crucial network

1 Moonshot Al

parameters... + other obscure things

3.0
.\ [ | ] [ ]
< me Tradeoff for Loss 1.3 Nats (Python)
et Promising, but quite open!
‘\* —o— AdamWw
2.8 >~ RN Muon
~ ~
\\ \\
- b A RN 100 -
3| M. 2
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~ ~ o 80 1
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~
2.4 *\ *\
\\ \\
~ ~
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- 0.519x FLOPs ~~_ s . - .
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3 MUON 1S SCALABLE FOR LLM TRAINING

TECHNICAL REPORT

Jingyuan Liu! Jianlin Su’ Xingcheng Yao? Zhejun Jiang! Guokun Lai' Yulun Du!
Yidao Qin'! Weixin Xu! Enzhe Lu! Junjie Yan'! Yanru Chen! Huabin Zheng!
Yibo Liu! Shaowei Liu’ Bohong Yin! Weiran He! Han Zhu' Yuzhi Wang!
Jianzhou Wang'! Mengnan Dong! Zheng Zhang' Yongsheng Kang! Hao Zhang'
Xinran Xu! Yutao Zhang' Yuxin Wu! Xinyu Zhou' * Zhilin Yang!

1 Moonshot AI 2 UCLA

Matching update RMS of AdamW Muon is designed to update matrix-based parameters. In practice, AdamW
1s used in couple with Muon to handle non-matrix based parameters, like RMSNorm, LM head, and embedding

parameters. We would like the optimizer hyper-parameters (learning rate n, weight decay ) to be shared among matrix
and non-matrix parameters.

We propose to match Muon’s update RMS to be similar to that of AdamW. From empirical observations, AdamW'’s
update RMS 1is usually around 0.2 to 0.4. Therefore, we scale Muon’s update RMS to this range by the following
adjustment:

Wt — Wt—l — nt(OZ . Ot o \/ma.x(A, B) -+ )\Wt_l) (4)

We validated this choice with empirical results (see Appendix A for details). Moreover, we highlighted that with this
adjustment, Muon can directly reuse the learning rate and weight decay tuned for AdamW.
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Final Validation Loss

o~
-

o
e

9
00

16

Sept 1st, 2025

Benchmarking Optimizers
for Large Language Model Pretraining

Andrei Semenov Matteo Pagliardini
EPFL EPFL

andrii.semenov@epfl.ch matteo.pagliardini@epfl.ch

Martin Jaggi

martin. jaggi@epfl.ch
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Fantastic Pretraining Optimizers and
Where to Find Them
Kaiyue Wen David Hall
Stanford University Stanford University
kaiyuew@stanford.edu dlwh@cs.stanford. edu
Tengyu Ma Percy Liang
Stanford University Stanford University
tengyuma@stanford. edu pliang@cs.stanford. edu
September 8, 2025

AdamW has long been the dominant optimizer in language model pretraining, despite numerous claims
that alternative optimizers offer 1.4 to 2x speedup. We posit that two methodological shortcomings have
obscured fair comparisons and hindered practical adoption: (1) unequal hyperparameter tuning and (i1)
limited or misleading evaluation setups. To address these two issues, we conduct a systematic study of ten
deep learning optimizers across four model scales (0.1B—1.2B parameters) and data-to-model ratios (1-8 X
the Chinchilla optimum). We find that fair and informative comparisons require rigorous hyperparameter
tuning and evaluations across a range of model scales and data-to-model ratios, performed at the end of
training. First, optimal hyperparameters for one optimizer may be suboptimal for another, making blind
hyperparameter transfer unfair. Second, the actual speedup of many proposed optimizers over well-tuned
baselines is lower than claimed and decreases with model size to only 1.1 X for 1.2B parameter models.
Thirdly, comparing intermediate checkpoints before reaching the target training budgets can be misleading,
as rankings between two optimizers can flip during training due to learning rate decay. Through our thorough
investigation, we find that all the fastest optimizers such as Muon and Soap, use matrices as preconditioners
— multiplying gradients with matrices rather than entry-wise scalars. However, the speedup of matrix-based
optimizers 1s inversely proportional to model scale, decreasing from 1.4 X over AdamW for 0.1B parameter
models to merely 1.1 x for 1.2B parameter models.



Btw,
this is actually
a very good

papetr..

@ Tengyu Ma & @

Adam, a 9-yr old optimizer, is the go-to for training LLMs (eg, GPT-3,
OPT, LLAMA).

Introducing Sophia, a new optimizer that is 2x faster than Adam on

LLMs. Just a few more lines of code could cut your costs from $2M to
$1M (if scaling laws hold).

—
o y I 7% % 7= ; A PN AP —
\ v s eSS Ialne I AT S W. kW L i
A v Y alade¥VNi~l1alny J < || || b=y / - /
| A W/ L) W F L) S W) h 4 N ) &l S —
q A v s ¥ CARMNSJD /) 4 W S o T \J 4
o P, i J‘ s ‘| e s oot s C S =
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.... Same story again? Maybe, let’s hope not.



Ok! How do we start?



Simplified Models

mik — Eh/l/A\’B1 [VZL(Wk)] . Vl-k — Eh/lla\ﬂ2 [VIL(Wk)ZJ

Wkl — kT k Adam

wl.k b= wi — L V.L(w;) RMSprop
; ; vE + €
20 € =

with = wf —ysign(V,L(w))) SignSGD

Momentum
reintroduced
W

= wk — psign(m) Signum
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Published as a conference paper at ICLR 2023

Published as a conference paper at ICLR 2020

NOISE IS NOT THE MAIN FACTOR BEHIND THE GAP
BETWEEN SGD AND ADAM ON TRANSFORMERS, BUT
SIGN DESCENT MIGHT BE

WHY GRADIENT CLIPPING ACCELERATES TRAINING:
A THEORETICAL JUSTIFICATION FOR ADAPTIVITY

Jingzhao Zhang, Tianxing He, Suvrit Sra & Ali Jadbabaie

Massachusetts Institute of Technology Frederik Kunstner, Jacques Chen, J. Wilder Lavington & Mark Schmidt!
Cambridge, MA 02139, USA University of British Columbia, Canada CIFAR AI Chair (Amii)'
{jzhzhang, tianxing, suvrit, jadbabai}@mit.edu {kunstner, jola2372, schmidtm}@cs.ubc.ca

jacquesc@students.cs.ubc.ca

PTB WikiText-2

(8¢
1
o
-
(0
4
“
.

Medium batch
Training Loss

SGD
Norm.

......
. ® e,
.....
.........

SGD

Sign Norm.

11 lllllll

Adam
Sign

Epoch 60

Full batch
Training Loss

. Adam
1 1 |
0 Epoch 300

107"

Figure 7: Sign descent can close most of the gap between GD and Adam in full batch. At small
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. Published as a conference paper at ICLR 2023
Published as a conference paper at ICLR 2020

NOISE IS NOT THE MAIN FACTOR BEHIND THE GAP
BETWEEN SGD AND ADAM ON TRANSFORMERS, BUT
SIGN DESCENT MIGHT BE

WHY GRADIENT CLIPPING ACCELERATES TRAINING:
A THEORETICAL JUSTIFICATION FOR ADAPTIVITY

Jingzhao Zhang, Tianxing He, Suvrit Sra & Ali Jadbabaie

Massachusetts Institute of Technology Frederik Kunstner, Jacques Chen, J. Wilder Lavington & Mark Schmidt'
Cambridge, MA 02139, USA University of Br.itish Columbia, Capada CIFAR AI Chair (Amii)’
{jzhzhang, tianxing, s ' ' R ARLARSESSTE = ~tRWalSERNE - :

Quite small experiments, but theory is good!

1 1) How big is the Signum-Adam gap in standard
. LM training setups?
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2) Is that all? Is there more to understand? And
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Figure 7: Sign descent can close most of the gap between GD and Adam in full batch. At small
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| got a bit obsessed.. so | did spend months
In my office tuning optimizers in LMSs..

(> 3000 runs)



g P

:
Implementation & Enhancements “r %

e

e Base: nanoGPT k&b r
- B J
e Additions: RoPE, RMSNorm (Pre), SwiGLU -0 ad

e Tokenizer: GPT-NeoX (vocab = 50,280) Niccold Ajroldi

Niccolo-Ajroldi

Training Recipe Pretrain a Transformer on Language Modeling

e Precision: bfloat16 (FP16 for inference)
A minimal yet efficient implementation of causal language modeling in PyTorch.

* LR schedule: warm-up (10%) — cosine decay to 1e-5
It features a custom torch-compilable Transformer model implementation supporting RoPE, GLU, and RMSNorm. It

* Gradient cllpplng: norm > 1 supports distributed training via Distributed Data Parallel (DDP).
e Validation: 100M tokens

e No weight tying

A dedicated script is included for downloading, tokenizing, and chunking data, making data preparation seamless.

https://github.com/Niccolo-Ajroldi/plainLM

Compute
¢ 160M model
o 12 layers, 12 heads, d=768, FlashAttention 1l B s Want 1{® CQntribute 1{®

O 1x A100-80GB — ~5.8h/run

e 410M model A series of foundation models for
transparent Al in Europe

open-source LMs?

O 24 layers, 16 heads, d=1024, FlashAttention o ]
We are hiring interns and

0 8x A100-80GB — ~4.8h/run TRULY OPEN
including data, documentation, training and testing code, and evaluation metrics; n ' '
S software engineers
| I |
i COMPLIANT
Oth e r Settl n g S under EU regulations, OpenEuroLLM will provide a series of transparent and
s

* Pre-LN backbone with skip connections and small init

DIVERSE

for European languages and other socially and economically interesting ones,

® RO P E O n 2 5 % d i m S preserving linguistic and cultural diversity

e Dropout: disabled

https://institute-tue.ellis.eu/en/jobs/openeurollm
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https://github.com/Niccolo-Ajroldi/plainLM
https://institute-tue.ellis.eu/en/jobs/openeurollm

We do heavy tuning for each method, e.g. RMSprop:

k+1 _ |k k
w: T = w; — scheduley - V.L(w;)
5
EMA.(gh) + €

10 P2 = 09875 B2 = 0.975 B2 = 0.95 B> =0.9 B, =0.8 B2 = 0.6 B, = 0.4 B2 = 0.0

38 - - - - -
5 36° 3G 3 3G’ 3 35 5 3
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b e b b S b b S
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30 - - - - -

28 - - - - -

104 105 107 107 109 163 104 103 109 105 107 103 104 105 107 105

i
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Figure 10: RMSprop with decoupled weight decay 0.1. Implemented with Pytorch AdamW setting 31 = O.
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We heavily tune all methods claiming a connection
to Adam. SignSGD + momentum closes 96% gap

Table 1: (Signum closes 96% of the perplexity gap between Adam and SGD) Validation perplexity comparison
of widely used optimizers that interpolate between SGD and Adam, evaluated on a language modeling task (160M
parameters, 3.2B SlimPajama tokens, sequence length 2048, batch size 256 — Chinchilla optimal). We report
the mean and 2-sigma interval of validation perplexity (on 100M held-out tokens) across 3 initialization seeds.
Weight decay is always decoupled [Loshchilov and Hutter, 2019] and set to 0.1 [Biderman et al., 2023, Liu
et al., 2024 ] except for SGD where we further tune (§B). RMSprop does not use momentum, and Gclip is global
norm clipping to 1 (before applying momentum), Cclip is coordinate-wise clipping (after applying momentum).
Other hyperparameters, for all other methods, are carefully tuned, see e.g. Figure 2 and §3.

To optimally tune hyperparameters (e.g. Figure 2), we performed a total of 582 full training runs.

Adam Signum RMSprop SGD+Cclip SignSGD  SGD+Gclip SGD
Val ppl. 21.86+0.21 23.23+0.16 27.04+034 33.40+039 36.7840.57 37.76+061 53.6245.14
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Signum is a good model but not a good method.
It iIs 25% slower at optimal tuning!

Figure 1: Pretraining on SlimPa-
jama with Chinchilla-optimal [Hoff-
mann et al., 2022] scaling. Both mo-
mentum and learning rates for Stgnum
are extensively tuned (§3). While
Signum closes 96% of the perplexity
gap between Adam and SGD with mo-
mentum (Table 1), still results in a 25%
slowdown : Adam achieves the same
performance with 3/4 of the budget.

Training Perplexity

160M params. All methods tuned to best.
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final test ppl

final test ppl

Actually, /), = [, works very well in Adam!

Signum+wd, 8 = 0.8 Signum+wd, B = 0.9 Signum+wd, B = 0.95 Signum+wd, B = 0.975 Signum+wd, g = 0.9875
,
28 - 1¢
27 | ] —— clip = True
- == clip = False
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equal betas —e— [3, = 0.9875
best with —e— [, = 0.99375
22.0 1 [eauat betas ‘ , 1 Tbest with ' —e— B, = 0.996875
best with equal betas
equal betas
21.5 1 . . . -

1073 1072 1073 1072 1073 1072 1073 1072 1073 1072

learning rate learning rate learning rate 48 learning rate learning rate



410M parameters, Chinchilla-optimal

l6.5 AdamW, B, = 0.9 AdamW, B, = 0.95 AdamW, B, = 0.975
16.4 -
16.3 B> =0.8
216.2- B, =0.9
0 16.1- %
= || mmm——- - mm B> = 0.975
| best with —
& 16.0 equalbetas| || = W\ |/ | a2 . B, = 0.9875
best with B B> = 0.99375
L e — equal betas
best with
15.8 - i equal betas
1073 1072 103 1072 1073 1072

learning rate learning rate learning rate

Figure 4: The final validation performance (100M held-out tokens) for 44 trained LMs with 420M parameters
trained on 8.2 B SlimPajama tokens (Chinchilla-optimal). Equal betas yields near-optimal performance. We use
gradient clipping and a batch size of 512 (scaled by 2 compared to Figure 2, as suggested by Zhang et al. [2025]).
Sequence length is 2048, weight decay is 0.1. Note that the standard setting (0.9, 0.95) is quite suboptimal here.
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Different batch sizes? (Training for 2.5B tokens)

24.0 AdamW, B, = 0.9 AdamW, B; = 0.95 AdamW, B; = 0.975
23.8 -
B, = 0.6
_ 23.6 - s B> = 0.8
o 23.4- \ mm B, =0.9
§ ‘ B> =0.95
| £3.2° mm B, = 0.975
A ) Oy ——— mm B, = 0.9875
best with B, =8, B B, = 0.99375
22.8 i
596 i [ hestwithgi=g, N
1073 1072 103 1072 10°3 1072
learning rate learning rate learning rate

Figure 15: Adam, batch size 128 trained for 2.5B tokens. Other settings are same setting as Figure 2.
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) ) - 4 B, =0.8
:% B, =0.9
-tg i i i ] B, =0.95
% 24.0 - best with 8, = 8- i i i | best with 8, = B, mm B, =0.975
= mm B, = 0.9875
23.5 y y - - B B, = 0.99375
best with 1 = B> —
30 d q - best with B, = B, d B B, = 0.996875
' best with 8, = B,
103 102 103 102 103 102 103 102 103 102
learning rate learning rate learning rate learning rate learning rate

Figure 13: Adam, batch size 256 trained for 2.5B tokens. Other settings are same setting as Figure 2.
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AdamW, B, = 0.9 AdamW, B; = 0.95 AdamW, B, = 0.975

26.50 1 1
2 = 0.6
e B2 =0.8
J— Bz = 0.9
B B> =0.95
mm B, =0.975
mm B> = 0.9875
____________ [ = 0.99375

24.75 T~ Fest with B: = B, A

24.50

24.25 1 AL S | A | v v v | S S S | A ) e

1073 1072 1073 1072 10-3 1072
learning rate learning rate learning rate

Figure 14: Adam, batch size 512 trained for 2.5B tokens. Other settings are same setting as Figure 2.
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More Data”? 2x the tokens (160M)

B./B, 0.8 09 095 0.975 0.9875 0.99375

0.9 20.15 20.00 20.00 19.94 20.14 20.8
095 20.14 19.93 79.87 19.93 19.88 20.24
0.975 262.12 20.01 19.80 19.73 19.72 19.74

0.9875 5797 189 20.40 19.88 19.81 19.87
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Can we simplify Adam given this empirical insight”? Can we ground it in theory?
With , = p, = p and dropping € (minor impact on performance) Adam reads

EMAs( g, ]

\ /EMAﬂ[g,g]

Proposition. Recall that m;, := EMAg[g,]. Thenif §; = f, = p,

dk=

iy

d, =
\/ mf + FEMA[(my_1 — g1)°]

So, if 0,3 = PEMAg[(my,_; — gk)z], we get

1
d, =
,/mk+0k 1+0/mk

- sign(m)



loss

EMAL(Mk -1 — gk)?]

Toy Modéel

Why Transformers Need Adam: A Hessian Perspective

Yushun Zhang'?, Congliang Chen'?, Tian Ding?, Ziniu Li'?, Ruoyu Sun'?*, Zhi-Quan Luo'?

'The Chinese University of Hong Kong, Shenzhen, China

2Shenzhen Research Institute of Big Data

{yushunzhang, congliangchen,ziniuli}@link. cuhk.edu.cn
dingtian@sribd.cn, sunruoyu@cuhk.edu.cn, luozq@cuhk.edu.cn
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loss

What about just adding an epsilon?

Toy quadratics LLMs
Fixed € mollifier on Sighum 0.0- Smoothed Signum+wd
— = 10.0 € =1e-03
— ¢ = 1.0
— Z - 01 23.8° vanilla (GI)
— £=001 S g =1e-09 (Gl)
40(,,-)' 23.0 e =1e-06 (Gl)
% vanilla (Z1)
EE 23 .4 - € =1e-09 (Zl)
e =1e-06 (ZI)
23.2 1
0 100 200 300 400 500 2x10% 3x1044x10% 6x10%  10-3

iteration learning rate



Why m, := EMA[g,] and o, := BEMAs[(m_; — g,)°]?
They look like mean and variance of gradients, but can we be more precise?

Consider the following online variational inference model:

At each Iteration we observe a new gradient g, _ ;.
» Assume uniformly in time g, ; ~ // (m, 6), where both m, ¢ are unknown.
» We want to update our estimate (m,_ , 6;.,{) of (in, o) such that

A. It becomes likely that g, ~ N (my{, 01 1)

B. We do not move much from previous distribution ./ (m,, ;)

ldea: Simultaneous estimation of mean and variance in the above model solves

(Mt 15 Opyp) = argmin, [—10gp(gk+1 | m, 0)+ %KL (A/(mk, o) || N (m, 0))]
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Min, 6>0 | —10g p(giy1 1M, 0)+ %KL ('/V(mk’ op) || N (m. 5)>]

Theorem. Let # = (1 + 1)~!, then the solution to the problem above is
My, = pmy+ (1 = g = EMAg[g 4]
Op+1 = Poy + p(1 = p)(my, — 8k+1)2 = PEMA [(mk — 8k+1]2)

Proof. Recall some well-known formulas for Gaussians

|
—Ing(gk+1 |m, o) =—logo + —(8ry1 — m)2
2 20

- 2
KL (Wm0 I #m, ) = o | %4+ L1 og (ﬁﬂ

2 | o o
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After some manipulations, we get:

1+ 4 |

min,, .o F(m, o) = 5 : log(o) + Py (g —m)* + - (ak + (m;, — m)z) + const
oF A2 +
— =0 —> m = S+
om 1+ 4
OF Mg —m)* + |0 + (my, — m)?|
— = () — o -
do 1+ A

Now 1 is super simple: since # = (1 + A1)/,

1 A

m, + —— —> m = pm;, + (1 —
1+ k 1+/1g pmy+ (1 = p)g

n =

For o we need a bit more work, since the solution depends on the new estimate m
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Mg —m)* + |0 + (my, — m)?|
O —

1+ A
Ag + my,
Recall that m = . SO we have
1+ 4
_ 2 12(o — 2
(¢ — m)? = (& — my)  (my - m)? = (& — my)
(1 4+ A)? (1 4+ A)?
Therefore, , ,
Mg —m Ao —
o (g ©) n Oy N - = Oy n (g — my)
(1 4+ 4)2 1+ 4 1+ 4 (1 + 1)?

Which implies, under # = (1 + 1)7/,

Orr1 = Po + P = Py — giy)* = BEMA, [(my — g,,41%)
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Sounds familiar? Yes! Was already done in 2018!

Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients my Sign(m t) 1 .
o N I B © sign(m:)
> | >
Lukas Balles! Philipp Hennig ' 2 O 1 8 ! ! my \ my

The missing piece in Balles and Hennig (2018) was to show when and if the term

(sz =V, — m,f IS @ measure of variance.

We show: v, — m,g only has a precise variance interpretation for the case p; = p».

Proposition: Adam’s update d, can be represented as

iy

\/ m? +y EMA [(amy_; — bg;)?]

d

forsome a,b,y € Rand 7 € (0,1) if and only if 5, = f,.



Sometimes though... reality
IS Just much simpler.

| claim the literature
(including me)



Adam vs. SGD training a 160M parameter transformer (1.2 B tokens budget)

Adam | bs=64 Adam | bs=256 Adam | bs=1024
> B1=0.0 [31=ol.o
i B1=0.9 B1=0.9
Q- 45 - B1=0.95 7 B1=0.95 i
;c —e— 1 =0.98 —e— B1=0.98 B, =0.0
Tg 35 - _ i B1=0.8
= \\0—.’0 o ® 3
——g —3 —o— [1=0.95
25 ' L ' oo P EET ' L ' L ' L ' oo P EET
10~4 103 102 1074 103 102 1074 103 1072
SGD | bs=64 SGD | bs=256 SGD | bs=1024
85 - B1 = 0.0 - B1=0.0 ]
= 75 - B, =0.9 - B, =0.9 -
i 65 - B1=0.95 - B1=0.95 - B8,=0.0
(>U 55 4 —*— B1=0.98 4 —e— [B:;=0.98 _ B,=0.9
(_g 45 - --—- Best Adam | —-- Best Adam _ B, =0.95
iz 35- — 4 ] Iy 17 =098
T st et bl | --- BestAdam "~ T 77°

1077 101 109 101 1077 101 10° 101 1077 101 10° 101
Learning Rate Learning Rate Learning Rate
63



Final valid PPL

50 -

45 -

40 -

35 -

30 -

25 -

Token budget
Adam SGD
0.66B 0.66B

——1.31B —— 1.31B
—=— 2.62B —=— 2.62B
—v— 5.24B —— 5.248B

—¥

20_" BN B | — T Tt T ' rrl
8 1o 32 04 128 256 512 1024

BS

Batch sizes 8 - 64

50 A
N BS
& Adam SGD
5 40 - 8 8
'(_; = 106 = 106
> m 32 m 32
< 30 - \ Ho4 MHO64
=
— 3

20 T T T T | ' | — v T [ |

5k 10k 20k 40k 80k 160k
Batch sizes 128 - 1024

50 A
N BS
& Adam SGD
- 40 - 128 128
-(_; = m 256 m 256
> Bm5]12 E5]12
r_g 30 - N 1024 W 1024
L \

ol —= . .

2.5k 5k 10k 20k

Number of Steps

64



PPL

PPL

Adam vs. SGD training a 160M parameter transformer (different token budgets)

BS =8 BS = 32 BS = 64

60 - - -

40 - - \ -

20 T T T T T T T | T T T T T T T T 1 ' T T T T T | 1
1 160 1 10 20 40 80 1 5 10 20 40

BS = 256 BS = 512 BS = 1024

60 - - . _

40 - \\ - - \"-

20 ' ' L N N L ' ' ' L L ' '
0.1 2.5 5 10 0.1 0.1 2.5

Steps (x103) Steps (x103) Steps (x103)
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< SGD at very low batch sizes, even at larger scales (tuned) !

20 -
] 22 7 1 19 7
al ol
ol ol
_ - 18 A
S 20 - S
(_U f_U 17 7
= Adam T 16 - Adam \\,\‘
1891 —«— sGD e —e— SGD
T T —TT T T —TTT T T —TTTTTT T —TTTTTT 15 L | L L | L L | L L | L L L |
104 103 102 101 1009 10~4 103 1072 101 100
Learning rate Learning rate
i 21 - 21 -
it 17 oo i
i 17 i
o ' 15 o '
c 10° 5 c 107 -
e 5 5 E
= - = -
102 E Adam 102 E Adam
]|— SGD | — SGD
10 10 10 10° 10 10 101 103 10°
Steps Steps

(a) 410M model on SlimPajama (seq. length 2048 (b) 1B model on FineWeb (seq. length 1024, batch
batch size 8, 500k steps) — 1.5 days of training. size 16, 850k steps) — 5 days of training.
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Another paper independently confirmed this!

Small Batch Size Training for Language Models:
When Vanilla SGD Works, and Why Gradient

Martin Marek

New York University

Accumulation Is Wasteful

Sanae Lotfi
New York University

martin.m@nyu.edu

Andrew Gordon Wilson
New York University

Aditya Somasundaram
Columbia University

Micah Goldblum
Columbia University

Validation loss
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So, how can we
understand this?

It Is actually super simplel!!



Assumption: gradient noise is i.i.d. with constant 1-sample covariance 2

For SGD, the following is a weak-first-order-approx. :

3
dX, = — VX)d + 4 /%th

For SignSGD, the following (Compagnoni et al. 24) is a weak-first-order-approx. :

B , 1/2
dX, = — erf (\E =AY, f(Xt)> dt + \/ﬁ I, — diag (erf (\@ZJ_VJC(XI) )) dw,
2

*1.e., algorithms follow flow for small 7
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Example: Optimization of f(x) = ||x||*/2

SGD drift
X
Vf( t) - SGD, noise =0.1
SGD, noise =0.3
SignSGD drift é SGD, noise =1

- SignSGD, noise =0.1
- S1gNnSGD, noise =0.3
SignSGD, noise =1

B _ |
erf (\E ‘7Vf(Xt)>

0 1000 2000
Iiteration

Drift. models early-stage dynamics, before signal-to noise ratio becomes small.
« For SGD: this is 5 independent, For SignSGD: bigger with 5 (until saturation)

» Early progress in SGD is dominated by # steps: critical batch size is 1

» Early progress in SignSGD improves with batch, until saturation of erf (critical batch)
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Proof (sketch, Compagnoni et at. 25). m(x) is an estimate of the gradient,
we assume is has Gaussian distribution centered around the full-batch gradient V f(x) :

sign(m(x)),  m(x) ~ N/ (Vf(x),5°/B)

- [sign(m(x))]
= P[sign(m(x)) = sign(Vf(x))] - sign( Vf(x)) — P[sign(m(x)) # sign( Vf(x))] - sign( Vf(x))

= (2P[sign(m(x)) = sign(Vf(x))] = 1) - sign(Vf(x))

1 1 £ —
Recall basics : if Z ~ A (i, ¢?), then if £ > p, we have P[Z < ¢] = — + _erf( ”)

22\ 22

—> For u > 0, P[Z > 0] = P[sign(Z) = sign(u)] = l + lerf( s )
2 2 \/2g2

—> If Vf(x) > 0, P[sign(m(x)) = sign( Vf(x))] = % + %erf( Vf();)\zﬁ) — coord.wise
\/ O

/1



— If Vf (x) > 0, P[sign(m(x)) = sign( Vf(x))] = % + —erf( V) B) — coord.wise

Same holds for the negative case.

- [sign(m(x))]
= (2P[sign(m(x)) = sIgn(Vf(x))] — 1) - sign( Vf(x))

= erf (\/g(az)‘% Vf(x))

Jl ; 2 1/2
dX = — erf (ﬁ -3 Vf(XQ) dt + \/ﬁ I, — diag (erf (ﬁ V) )) dw,
’ V2

*GGaussianity is not strictly needed for our insights on batch-size acceleration to hold. As
discussed by Compagnoni et al. (25) and clear from the argument above on the cumulative
distribution, a similar expression can hold even for distributions with heavier tails.
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Thank you!!! w=

We have not succeeded in answering all our problems.
The answers we have found only serve to raise a whole set
of new questions. In some ways we feel we are as confused

as ever, but we believe we are confused on a higher level
and about more important things.

Posted outside the mathematics reading room —Tromsg University



Fineweb dataset SlimPajama dataset

sequence length 2048 sequence length 2048
12 layers Transformer. 24 layers Transformer
32 -
50 - 30 -
_, 45~ —1 28 A
al al
al al
2 40 - = 26 -
> >
Lr%s 35 - _E 24 -
22 A
30 -
20 -
25 -
4 8 16 32 64 128 256 512 4 8 16 32 64
BS BS
—=— SGD|[160k  —— SGD | 40k SGD | 10k —— 5GD]160k  —e— SGD | 40k

—=— Adam | 160k —— Adam | 40k Adam | 10k —— Adam | 160k —e— Adam | 40k



Can the gap be explained by class imbalance?
Looks like rare tokens are hard to learn for SGD, but only at big batch..

Train PPL

Train PPL

(a) Per-group PPL by token freq. for SGD and Adam.
—— SGD least freq.

sgd, bs=64

101

L) Iillill] T UIYIIITI L) LI
10° 104

step
sgd, bs=1024

102

10°
step

SGD most freq.

101

adam, bs=64

adam, bs=1024

101

102

103 104
step

102

10°
step

BS=64, frequent

104 103 104
step

BS=064, rare
10° RTSETIT

102 +——r——m
102 10° 104
step

BS=1024, frequent

10°
103-\\\\\\\\\\~““_
101 ——rrry
102 103
step
BS=1024, rare
10°
10° §§§\
104 A\
103 _
102 | RS
102 103
step

(b) Adam-SGD gap across freq. groups.

Adam most freq.

—— Adam least freq.



AdamW

For boosting generalization, a standard technique Is doing L2 regularization,
helping driving not-needed parameters to be close to zero. A soft constraint.

min L(w) — minL(w) := L(w) + Euwuz

People were Initially feeding VZ(W) into the Adam moving averages.

Algorithm 2 ' Adam with L5 regularization

. given o = 0.001, 81 = 0.9, 82 = 0.999,e =107, A € R
initialize time step £ < 0, parameter vector 8;—o € IR", first moment vector m.;—o < 0, second moment
vector vi—g < 0, schedule multiplier n;—o € R

N =

3: repeat

4 t<—t+1

5:  Vfi(0:—1) < SelectBatch(0;:_1) > select batch and return the corresponding gradient
6 8 < Vft(Ht_l) +A9t_1

7: my < Bime—1 + (1 — B1)g, > here and below all operations are element-wise
8: vy Povici+ (1 - Ba2)g;

9:  ry +—my/(1— ) > (3 is taken to the power of ¢
10: ¥y < v /(1 — %) > (2 is taken to the power of ¢
11 n: <— SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

12: Ot <— Ot—l — Nt (aﬁlt/(\/f’_t + 6)

13: until stopping criterion is met
14: return optimized parameters 0
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Algorithm 2 Adam with decoupled weight decay (AdamW)

1: given o = 0.001, 81 =0.9,8, =0.999,e =107, A e R 6.5 —————m
2: initialize time step ¢t < 0, parameter vector 8;—o € R", first moment vector m.;—o < 0, second moment —— Adam
vector vi—o < 0, schedule multiplier n;—g € R 6r| —5— AdamW
3: repeat 55|
4: t<+t+1 e
5:  Vfi(0i—1) < SelectBatch(0:_1) > select batch and return the corresponding gradient ‘g 51
6 g, < Vfi(0i-1) 5
7 mi < Bimi—1+ (1 — 51)g, > here and below all operations are element-wise @ 49
8: vy Bavi1+ (1 — B2)g; -t
9: < my/(1—BY) > 31 is taken to the power of ¢
10: vy < v /(1 — B%) > B2 is taken to the power of ¢ 35"
11:  n < SetScheduleMultiplier(%) > can be fixed, decay, or also be used for warm restarts
12: 6y < 0¢—1 — (aﬁl /(\/P: + €) +)0 ) : R
o tj; t=1 T Tl \ e/ AV =) Basically, Adam on the loss, 10 10Weight de::(;y A 10
. until stopping criterion is met :
14: return o%?im%zed parameters 0, SGD on the regularlzer! Normalized weight decay times 10 for AdamWw

Today, basically every LLM is trained with AdamW.

Note however that in LLMs this phenomenon is not really about test loss, SGD
(with or without regularization cannot optimize —even the train loss!)
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