
Antonio Orvieto, 2025

Training LLMs: do we understand
our Optimizers?

1

Let be a token sequence from the true data  
generating distribution where . Let .

𝒳 = {x1, x2, . . . , xT} ∼ p(𝒳)
p(𝒳) xt ∈ 𝕍 𝒳≤t = {x1, x2, . . . , xt}

A language model learns the factorization

p(𝒳; θ) = p(x1)
T−1

∏
t=1

p(xt+1 |𝒳≤t; θ)

Let be a token sequence from the true data  
generating distribution where . Let .

𝒳 = {x1, x2, . . . , xT} ∼ p(𝒳)
p(𝒳) xt ∈ 𝕍 𝒳≤t = {x1, x2, . . . , xt}

A language model learns the factorization

p(𝒳; θ) = p(x1)
T−1

∏
t=1

p(xt+1 |𝒳≤t; θ)

Probability of the next word  
given previous

Pineapple

goes

on

Huge powerful
Transformer 🧠 Pizza

2020

Spoiler: this was 2.5 years ago, we still use Adam

But…

What does theory say? (Jiang et al., 2025)

* this is a bit of a simplification, see e.g. smoothness, and Jiang et. al 25(L0, L1)

Outline

• Introduction: what is Adam?

• Introduction 2: History class: why do we use Adam over SGD? 
 + a tiny bit of Muon for the fans.

• Why is this understanding optimizer gaps important for LLMs future.

• Core:

• Part 1: large ablation of Optimizer Gaps on LMs.

• Part 2: insights and new interpretations of Adam.

• A surprise, for everyone (especially me, shock).

10

Motivation: why are we not 
satisfied with Adam

My obsession this spring

The surprise

Quote from ‘The Young Pope’ by Sorrentino, Episode 2

most important author
of the last twenty years?

Careful now, not the best,

virtuosity is for the arrogant.

optimizer = torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08)

optimizerCited > 220k times!

12

wk+1
i = wk

i −
η

vk
i + ϵ

mk
i

mk+1
i = β1 mk

i + (1 − β1)∇iL(wk+1)

vk+1
i = β2 vk

i + (1 − β2)∇iL(wk+1)2

optimizer = torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08)

lr=0.001 eps=1e-08

beta_1=0.9

beta_2=0.999
m0

i = ∇iL(w0)
v0

i = ∇iL(w0)2

Update of -th weighti

wi
SGD with momentum

and scaled stepsize

Momentum update

Scaling factor update

Usually, update is written 
in vector form, with  
element-wise divisions 
and multiplications.

13

In a nutshell..

wk+1
i = wk

i −
η

vk
i + ϵ

mk
i

mk
i = EMAβ1 [∇iL(wk)], vk

i = EMAβ2 [∇iL(wk)2]

Setting to 0 (no momentum) 
we get RMSprop  

(Tieleman, Hinton, 2012)

β1

EMA: exponential moving average

wk+1
i = wk

i −
η

vk
i + ϵ

∇iL(wk
i)

14

15

Effect of EMA
- Moving averages are slower 

as parameters increase.

- acts here as denoising.

- Higher produce more delay 
but smoother output signal.

- Very high s yield extremely  
resilient variation in output.

- Ultimately, all of this depends 
on the speed at which input signal 
changes.

β

β ∼ 0.5

β

β

16

Attention is dominating everything!

Text: sequence of  
words

Image: “sequence” of  
pixel patches.

Graph: “sequence” of  
nodes.

Why is it particularly crucial?

17

- PostLN transformers are hard to train, you need warmup

- .. and Adam! No Adam no party.

~2020

The Attention Mechanism (layer)ℓ

×softmax (
XWQW⊤

K X⊤

d) =

X WV
S

Zℓ = AℓXℓWV,ℓ

Aℓ = softmax (1

d
XℓWQ,ℓ (XℓWK,ℓ)⊤)

Yℓ = σ(ZℓWF1,ℓ)WF2,ℓ

Keys, queries, keys dimensions

18

 have a role completely different from

- In pink: token mixing parameters

- In yellow: MLP mixing parameters

WQ, WK WV, WF1, WF2

In transformers, Adam adapts to
different needs (curvatures) of
parameter groups: 

Good modern 
paper! (2024)

19

20

21

Just to name a few..

22

However, If you look back to 2017..

1) 2015-2018: Vision people trusted SGD with 
 momentum, and thought Adam was fast but  
 worse at test accuracy 

2) At the same time: optimization people started to  
think of Adam as a bad optimizer - it does not  
converge in some settings.

3) 2018: Loshchilov & Hutter discovered Adam’s  
 implementation of L2 regularization was wrong.  
 Adam(W) : fast and generalizes well.

4) At the same time: Transformers were born, and Adam was 
 picked as optimizer of choice.

  
 

23

5) Transformers could be only trained with Adam, yet this 
 information on NLP was not too interesting for optimization researchers

  

  

6) In 2020 some papers came out claiming heavy tail 
 noise in NLP tasks was at the root of success  
 of Adam. For many, case was closed.

  
 

7) Around 2021, ViTs took over vision: it was then  
 clear : efficient training of transformers is crucial.  
 

24

But why is it important to go beyond Adam?

Motivation 1: Adam-SGD gap
 
Some architectures like
Transformers are only 
trainable with adaptive methods
(Adam, Muon, Scion, etc..) 

What makes such architectures/
data unique? What can we learn
from this?

26

Motivation 2: New capabilities

DNA modeling scale

Attention

New models (e.g. Mamba) O(L)

27

28

Our results show that while pure SSM-based
models match or exceed Transformers on many
tasks, both Mamba and Mamba-2 models lag
behind Transformer models on tasks which
require strong copying or in-context learning
abilities (e.g., five-shot MMLU, Phonebook
Lookup) or long-context reasoning.

TLDR: SSMs can totally do this as good as attention.  
they are just super hard and unstable to train!!!

29

30

It was all about
optimization from the start!

31

So what about understanding
how to optimize better?

Recall: SSMs are super fast at
inference, we really want these

32

👀Perhaps Muon?

33

👀Perhaps Muon/Scion?

Yet Muon implementations reduce to
Adam on many crucial network

parameters… + other obscure things
Promising, but quite open!

34

35

Sept 1st, 2025

…. Same story again? Maybe, let’s hope not.

Btw, 
this is actually 
a very good 
paper.. 

Ok! How do we start?

Simplified Models

wk+1
i = wk

i −
η

vk
i + ϵ

mk
i

mk
i = EMAβ1 [∇iL(wk)], vk

i = EMAβ2 [∇iL(wk)2]

wk+1
i = wk

i −
η

vk
i + ϵ

∇iL(wk
i)

wk+1
i = wk

i − ηsign(∇iL(wk
i))

β1 = 0

β2, ϵ = 0

RMSprop

SignSGD

Adam

wk+1
i = wk

i − ηsign(mk
i) Signum

Momentum 
reintroduced

40

41

Quite small experiments, but theory is good!

1) How big is the Signum-Adam gap in standard
LM training setups?

2) Is that all? Is there more to understand? And
if so, can we have a simplified model.

42

I got a bit obsessed.. so I did spend months  
in my office tuning optimizers in LMs..  

 
(> 3000 runs)

434343

Implementation & Enhancements

• Base: nanoGPT

• Additions: RoPE, RMSNorm (Pre), SwiGLU

• Tokenizer: GPT-NeoX (vocab = 50,280)

Training Recipe

• Precision: bfloat16 (FP16 for inference)

• LR schedule: warm-up (10%) → cosine decay to 1e−5

• Gradient clipping: norm > 1

• Validation: 100M tokens

• No weight tying

Compute

• 160M model

◦ 12 layers, 12 heads, d=768, FlashAttention

◦ 1× A100-80GB → ~5.8h/run

• 410M model

◦ 24 layers, 16 heads, d=1024, FlashAttention

◦ 8× A100-80GB → ~4.8h/run

Other Settings

• Pre-LN backbone with skip connections and small init

• RoPE on 25% dims

• Dropout: disabled

• Layer-wise scaled initialization

https://github.com/Niccolo-Ajroldi/plainLM

Want to contribute to  
open-source LMs? 
 
We are hiring interns and 
software engineers!!

https://institute-tue.ellis.eu/en/jobs/openeurollm
44

https://github.com/Niccolo-Ajroldi/plainLM
https://institute-tue.ellis.eu/en/jobs/openeurollm

We do heavy tuning for each method, e.g. RMSprop:

45

wk+1
i = wk

i − schedulek ⋅
η

EMAβ2(gk
i) + ϵ

∇iL(wk
i)

We heavily tune all methods claiming a connection 
to Adam. SignSGD + momentum closes 96% gap

46

Signum is a good model but not a good method. 
It is 25% slower at optimal tuning!

47

Actually, works very well in Adam! β1 = β2

48

410M parameters, Chinchilla-optimal

49

Different batch sizes? (Training for 2.5B tokens)

50

51

52

More Data? 2x the tokens (160M)

53

dk =
EMAβ[gk]

EMAβ[g2
k]

With and dropping (minor impact on performance) Adam readsβ1 = β2 = β ϵ

dk =
mk

m2
k + β EMAβ[(mk−1 − gk)2]

Proposition. Recall that . Then if ,mk := EMAβ[gk] β1 = β2 = β

dk =
mk

m2
k + σ2

k

=
1

1 + σ2
k /m2

k

⋅ sign(mk)

So, if , we get σ2
k := β EMAβ[(mk−1 − gk)2]

Can we simplify Adam given this empirical insight? Can we ground it in theory?

54

Secret Sauce

Toy Model

block 1
block 2

block 3
Eigenvalues 
(both Hessians)

)��(
)
 �(
)

(
)
 �(
)

���"�����"�$�

����

���

����

����

�
�	

���
��
�$�

#$
�!
!�

�� $��������%��'�

&�����������
���
��	������
���
��	������
&�����������
���
��	������
���
��	������

1e-03

What about just adding an epsilon?

LLMsToy quadratics

Why and ?  
They look like mean and variance of gradients, but can we be more precise?

mk := EMAβ[gk] σ2
k := β EMAβ[(mk−1 − gk)2]

Consider the following online variational inference model:

• At each iteration we observe a new gradient .

• Assume uniformly in time , where both are unknown.

• We want to update our estimate of such that

A. It becomes likely that

B. We do not move much from previous distribution

gk+1

gk+1 ∼ 𝒩(m, σ) m, σ

(mk+1, σk+1) (m, σ)

gk+1 ∼ 𝒩(mk+1, σk+1)

𝒩(mk, σk)

(mm+1, σk+1) = argminm,σ≥0 [−log p(gk+1 |m, σ)+ 1
λ KL (𝒩(mk, σk) ∥ 𝒩(m, σ))]

Idea: Simultaneous estimation of mean and variance in the above model solves

57

−log p(gk+1 |m, σ) =
1
2

log σ +
1
2σ

(gk+1 − m)2

KL (𝒩(mk, σk) ∥ 𝒩(m, σ)) =
1
2 [σk

σ
+

(mk − m)2

σ
− 1 − log (σk

σ)]

Theorem. Let , then the solution to the problem above isβ = (1 + λ)−1

mk+1 = βmk + (1 − β)gk+1 = EMAβ[gk+1]

σk+1 = βσk + β(1 − β)(mk − gk+1)2 = β EMAβ [(mk − gk+1]2)

Proof. Recall some well-known formulas for Gaussians

minm,σ≥0 [−log p(gk+1 |m, σ)+ 1
λ KL (𝒩(mk, σk) ∥ 𝒩(m, σ))]

58

∂F
∂m

= 0 ⟹ m =
λg + mk

1 + λ

minm,σ≥0 F(m, σ) =
1
2

1 + λ
λ

log(σ) +
1
2σ [(g − m)2 +

1
λ (σk + (mk − m)2)] + const

∂F
∂σ

= 0 ⟹ σ =
λ(g − m)2 + [σk + (mk − m)2]

1 + λ

After some manipulations, we get:

Now is super simple: since ,m β = (1 + λ)−1

m =
1

1 + λ
mk +

λ
1 + λ

g ⟹ m = βmk + (1 − β)g

For we need a bit more work, since the solution depends on the new estimate σ m
59

σ =
λ(g − m)2 + [σk + (mk − m)2]

1 + λ

Recall that , so we havem =
λg + mk

1 + λ

σ =
λ(g − mk)2

(1 + λ)2
+

σk

1 + λ
⟹ σ =

σk

1 + λ
+

λ(g − mk)2

(1 + λ)2

(g − m)2 =
(g − mk)2

(1 + λ)2
, (mk − m)2 =

λ2(g − mk)2

(1 + λ)2

Therefore,

Which implies, under ,β = (1 + λ)−1

σk+1 = βσk + β(1 − β)(mk − gk+1)2 = β EMAβ [(mk − gk+1]2)
60

2018!!

Sounds familiar? Yes! Was already done in 2018!

The missing piece in Balles and Hennig (2018) was to show when and if the term
 is a measure of variance.σ2

k := vk − m2
k

 We show: only has a precise variance interpretation for the case . vk − m2
k β1 = β2

dk =
mk

m2
k + γ EMAτ[(amk−1 − bgk)2]

Proposition: Adam’s update can be represented asdk

for some and if and only if .a, b, γ ∈ ℝ τ ∈ (0,1) β1 = β2
61

Sometimes though… reality
is just much simpler.

I claim the literature
(including me) missed a
crucial observation. 

62

Adam vs. SGD training a 160M parameter transformer (1.2 B tokens budget)

63

64

Adam vs. SGD training a 160M parameter transformer (different token budgets)

65

Adam < SGD at very low batch sizes, even at larger scales (tuned) !

66

Another paper independently confirmed this!

So, how can we
understand this?

It is actually super simple!!!

68

For SignSGD, the following (Compagnoni et al. 24) is a weak-first-order-approx. :

For SGD, the following is a weak-first-order-approx. :

* i.e., algorithms follow flow for small η

dXt = − ∇f(Xt)dt +
ηΣ
B

dWt

drift diff

dXt = − erf (B
2

Σ− 1
2 ∇f(Xt)) dt + η Id − diag (erf (BΣ− 1

2 ∇f(Xt)

2))
2

1/2

dWt

drift diff

Assumption: gradient noise is i.i.d. with constant 1-sample covariance Σ

69

Drift: models early-stage dynamics, before signal-to noise ratio becomes small.

• For SGD: this is independent, For SignSGD: bigger with (until saturation)

• Early progress in SGD is dominated by # steps: critical batch size is 1

• Early progress in SignSGD improves with batch, until saturation of erf (critical batch)

B B

erf (B
2

Σ− 1
2 ∇f(Xt))

SignSGD drift

∇f(Xt)

SGD drift
Example: Optimization of f(x) = ∥x∥2/2

70

sign(m(x)), m(x) ∼ 𝒩(∇f(x), σ2/B)

𝔼[sign(m(x))]

Proof (sketch, Compagnoni et at. 25). is an estimate of the gradient, 
we assume is has Gaussian distribution centered around the full-batch gradient :

m(x)
∇f(x)

= ℙ[sign(m(x)) = sign(∇f(x))] ⋅ sign(∇f(x)) − ℙ[sign(m(x)) ≠ sign(∇f(x))] ⋅ sign(∇f(x))

= (2ℙ[sign(m(x)) = sign(∇f(x))] − 1) ⋅ sign(∇f(x))

Recall basics : if , then if , we have  Z ∼ 𝒩(μ, ς2) ℓ > μ ℙ[Z ≤ ℓ] =
1
2

+
1
2

erf (ℓ − μ

2ς2)
 For , ⟹ μ > 0 ℙ[Z ≥ 0] = ℙ[sign(Z) = sign(μ)] =

1
2

+
1
2

erf (μ

2ς2)
 If , — coord.wise⟹ ∇f(x) > 0 ℙ[sign(m(x)) = sign(∇f(x))] =

1
2

+
1
2

erf (∇f(x) B

2σ2)
71

= erf (B
2

(σ2)− 1
2 ∇f(x))

 If , — coord.wise⟹ ∇f(x) > 0 ℙ[sign(m(x)) = sign(∇f(x))] =
1
2

+
1
2

erf (∇f(x) B

2σ2)
Same holds for the negative case.

𝔼[sign(m(x))]
= (2ℙ[sign(m(x)) = sign(∇f(x))] − 1) ⋅ sign(∇f(x))

*Gaussianity is not strictly needed for our insights on batch-size acceleration to hold. As
discussed by Compagnoni et al. (25) and clear from the argument above on the cumulative
distribution, a similar expression can hold even for distributions with heavier tails.

dXt = − erf (B
2

Σ− 1
2 ∇f(Xt)) dt + η Id − diag (erf (BΣ− 1

2 ∇f(Xt)

2))
2

1/2

dWt

⟹

72

(Quote stolen from Bernt Øksendal masterpiece book)

Thank you!!! 🇵🇱

Fineweb dataset 
sequence length 2048  
12 layers Transformer.

SlimPajama dataset 
sequence length 2048 
24 layers Transformer

Can the gap be explained by class imbalance? 
Looks like rare tokens are hard to learn for SGD, but only at big batch..

76

AdamW
For boosting generalization, a standard technique is doing L2 regularization, 
helping driving not-needed parameters to be close to zero. A soft constraint.

min
w

L(w) ⟶ min
w

L̃(w) := L(w) +
λ
2

∥w∥2

People were initially feeding into the Adam moving averages:∇L̃(w)

77

Basically, Adam on the loss,  
SGD on the regularizer!

Today, basically every LLM is trained with AdamW. 
 
Note however that in LLMs this phenomenon is not really about test loss, SGD 
(with or without regularization cannot optimize —even the train loss!)

