



# Reliable and Sustainable AI: From Mathematical Foundations to Next Generation AI Computing

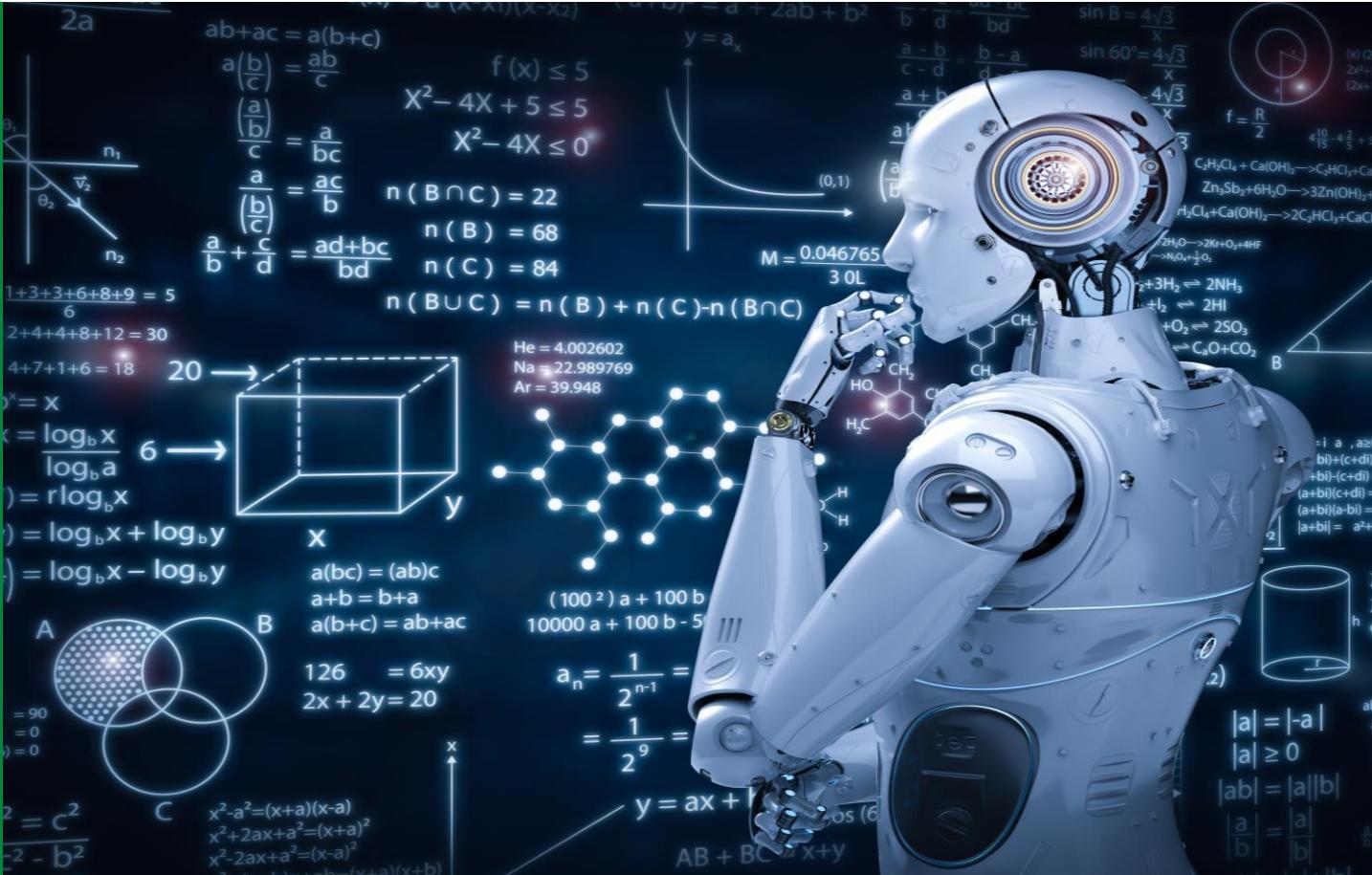
Gitta Kutyniok

*Ludwig-Maximilians-Universität München*

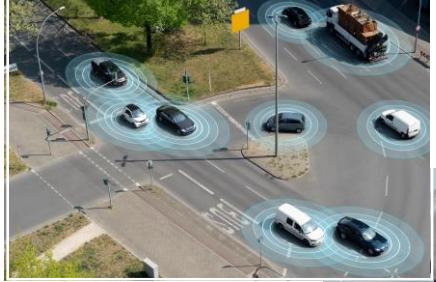
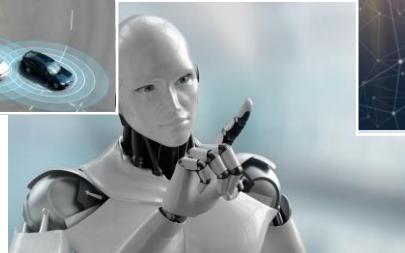
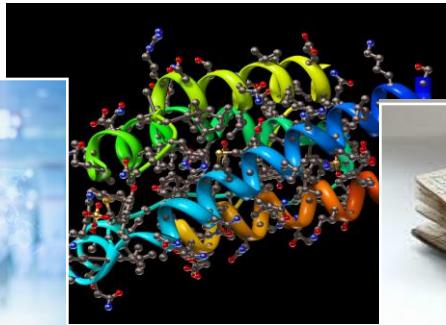
*(also DLR – German Aerospace Center  
& University of Tromsø, Norway)*

ML in PL Conference 2025

Warsaw, October 15 - 18, 2025



# Fourth Industrial Revolution by Artificial Intelligence



***Radical Change of our Society in its Full Breadth!***

# Challenges in Artificial Intelligence: Reliability



## Problems with Safety

Example:  
Accidents involving robots



## Problems with Security

Example:  
Risks of hacking into AI systems



## Problems with Privacy

Example:  
Privacy violations of health data



## Problems with Responsibility

Example:  
Black-box and biased decisions



**Current major problem  
worldwide:**

**Lack of reliability of  
AI technology!**



**Deep understanding from a  
mathematical perspective!**

# Challenges in Artificial Intelligence: Sustainability / Energy Efficiency

**Oracle will use three small nuclear reactors to power new 1-gigawatt AI data center**

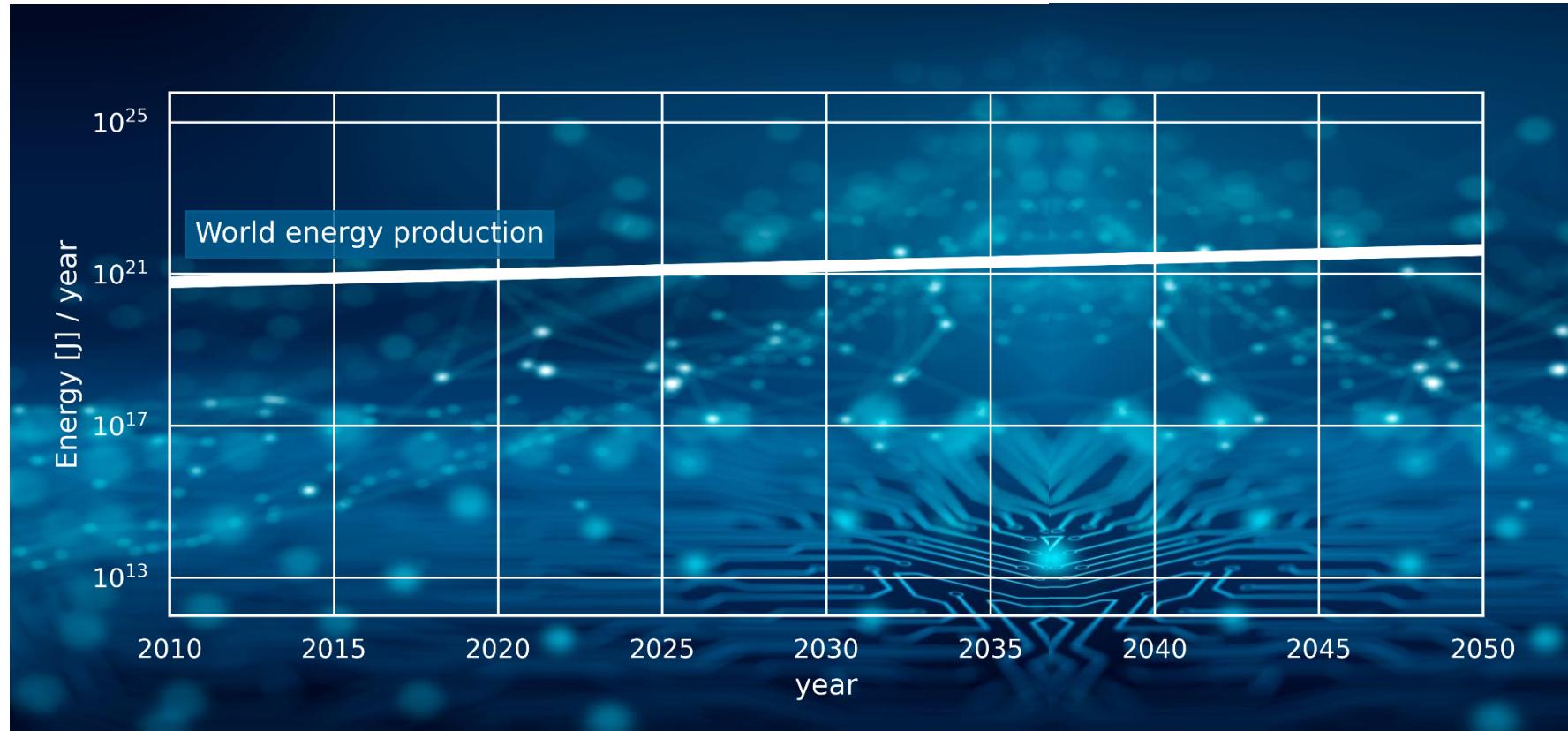
News

By Jowi Morales published 8 hours ago



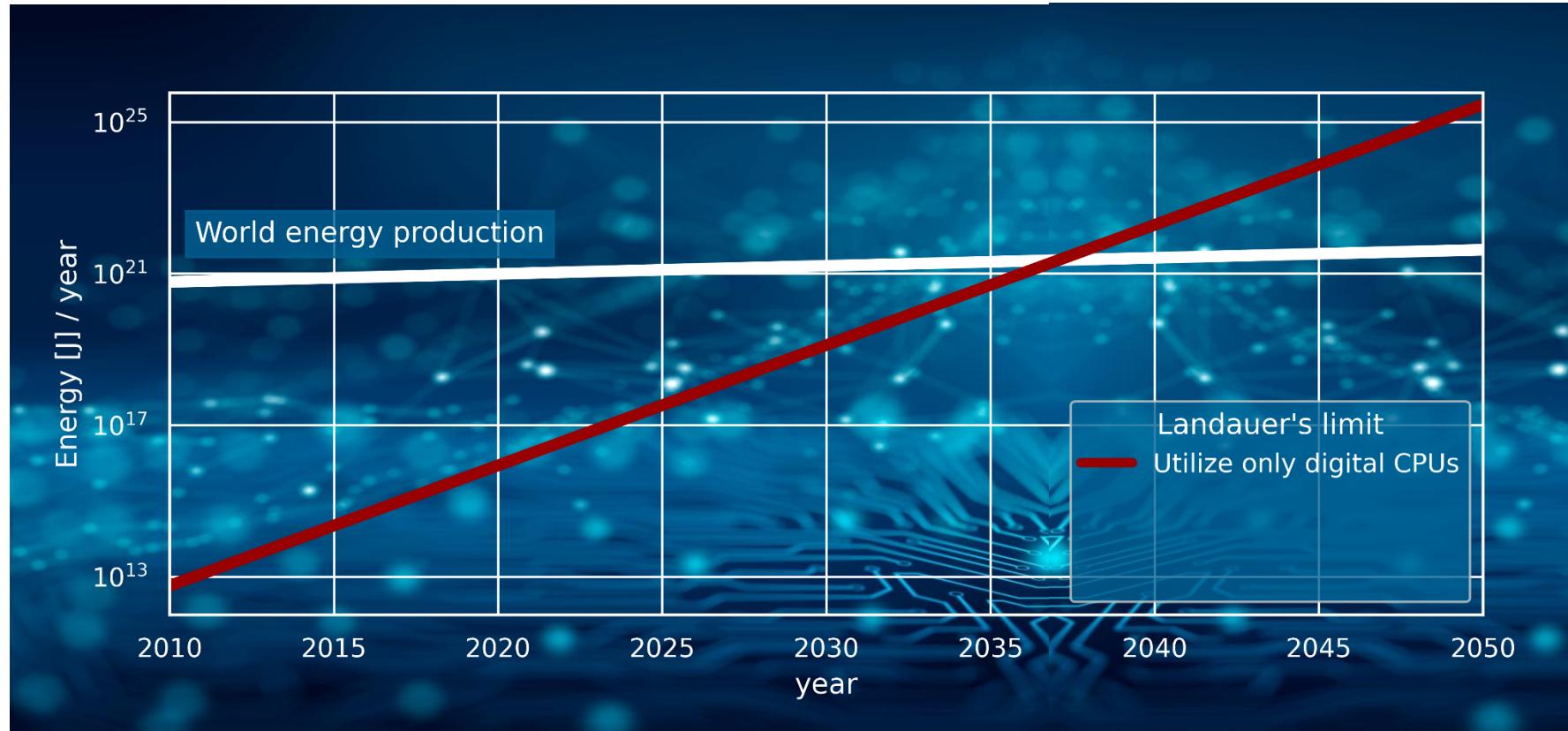
Source: Twitter/X, Sept. 2024

# Challenges in Artificial Intelligence: Sustainability / Energy Efficiency



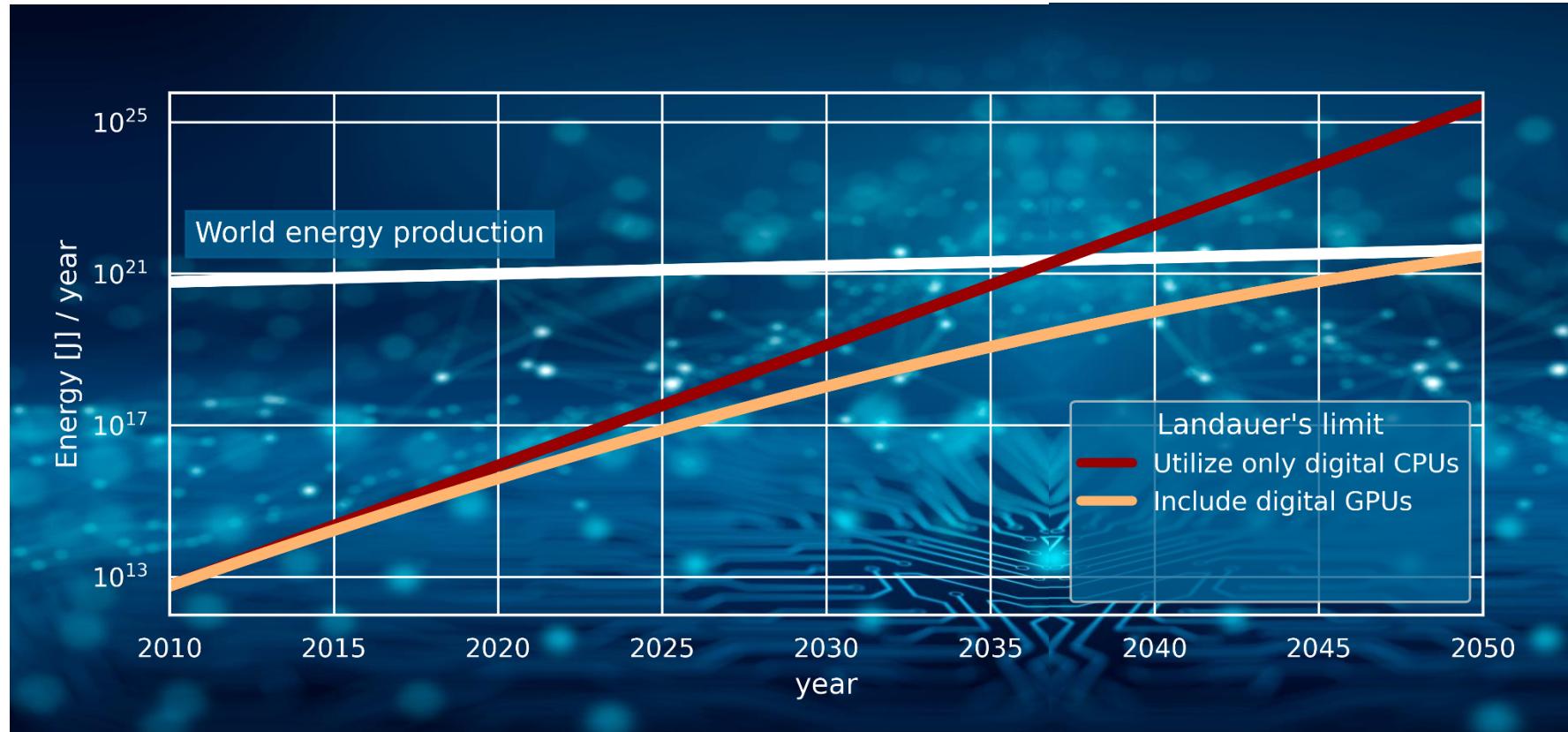
Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

# Challenges in Artificial Intelligence: Sustainability / Energy Efficiency



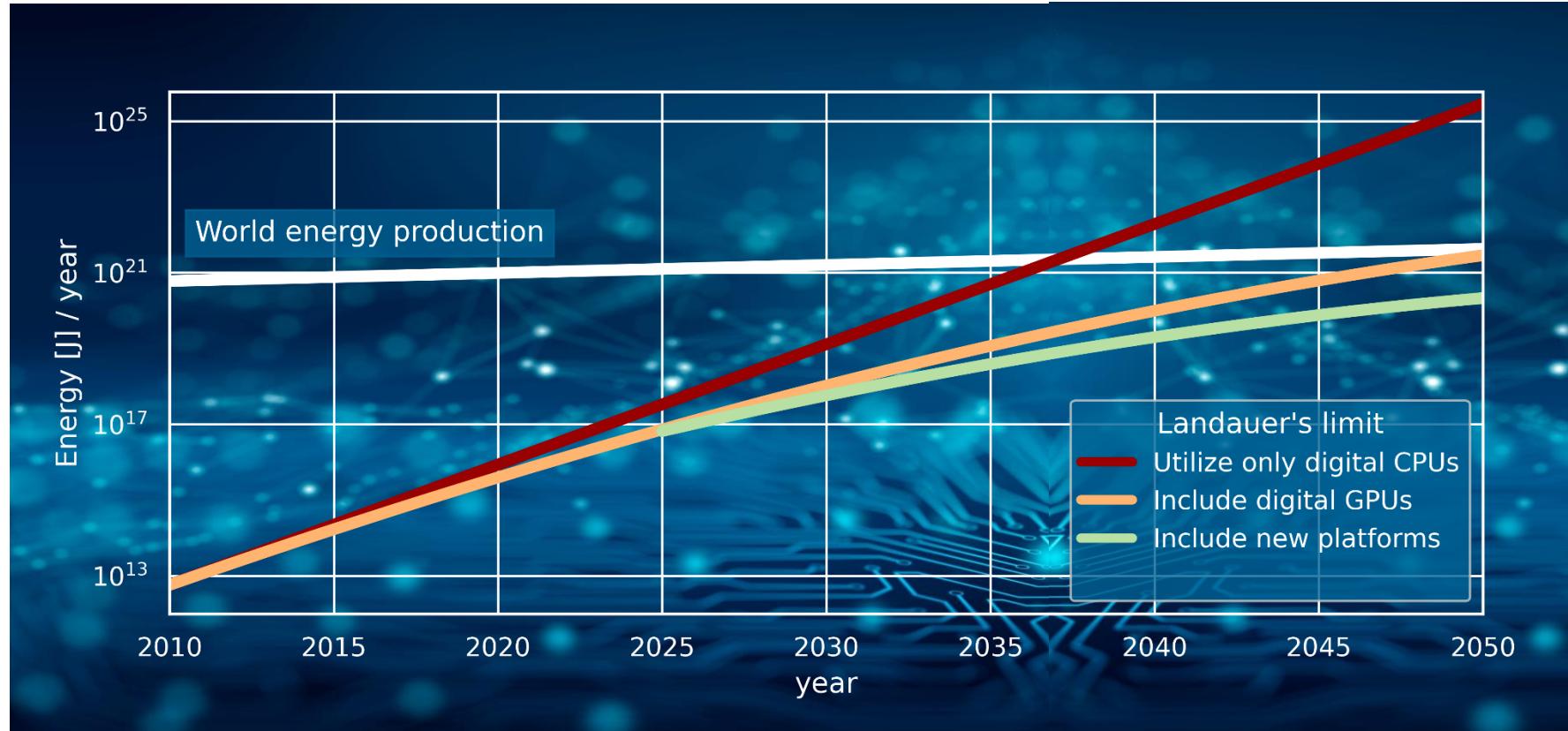
Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

# Challenges in Artificial Intelligence: Sustainability / Energy Efficiency



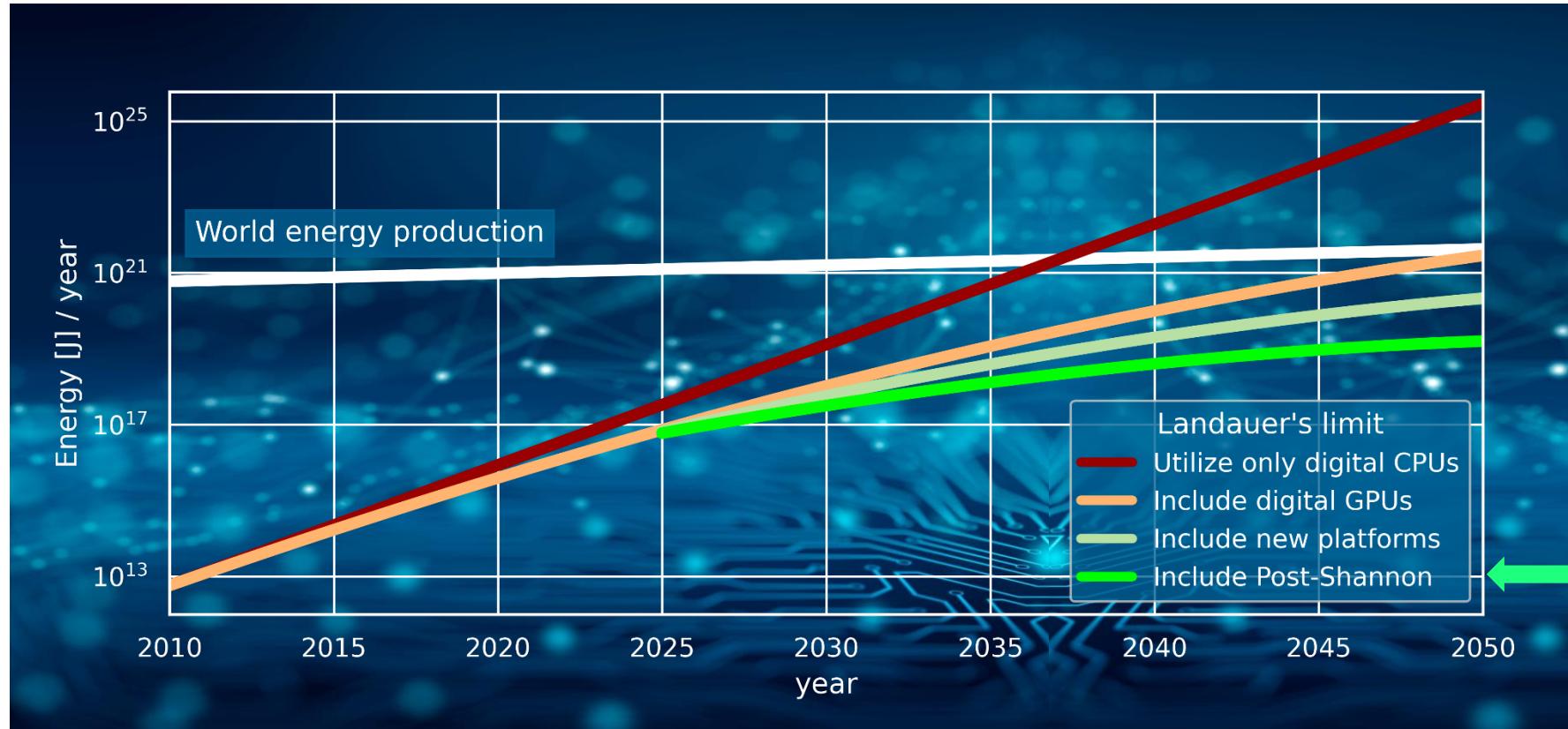
Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

# Challenges in Artificial Intelligence: Sustainability / Energy Efficiency



Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

# Challenges in Artificial Intelligence: Sustainability / Energy Efficiency



Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021



# *Taking a Mathematical Perspective*



# Deep Neural Networks

**Key Goal of McCulloch and Pitts (1943):**

→ Introduce *artificial Intelligence!*



**Artificial Neurons:**

$$f(x_1, \dots, x_n) = \rho \left( \sum_{i=1}^n x_i w_i - b \right)$$



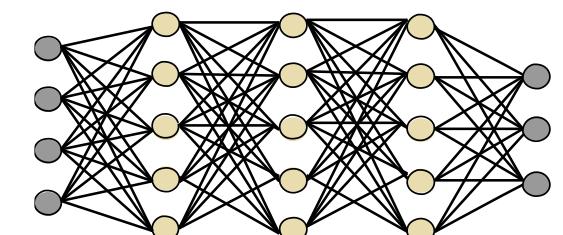
**Definition of a Neural Network:**

A *deep neural network* is a function  $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}^{N_L}$  of the form

$$\Phi(x) = T_L \rho(T_{L-1} \rho(\dots \rho(T_1(x)) \dots)), \quad x \in \mathbb{R}^d,$$

with

$$T_l: \mathbb{R}^{N_{l-1}} \rightarrow \mathbb{R}^{N_l}, \quad l = 1, \dots, L, \text{ where } T_l(x) = W^{(l)} x + b^{(l)}.$$

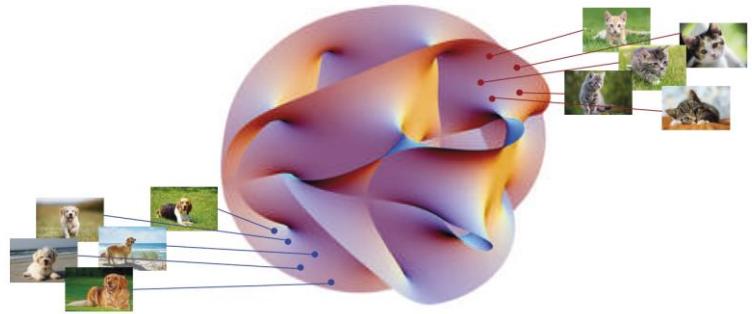


# Workflow of Applying Deep Neural Networks

## Starting Point :

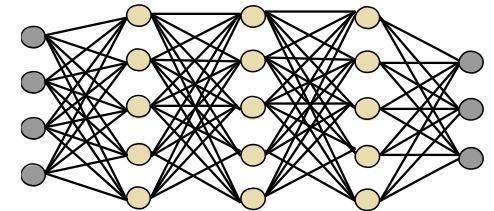
- Samples  $(x_i, f(x_i))_{i=1}^n$  of a function  $f : \mathcal{M} \rightarrow \{1, 2, \dots, K\}$ .

*Split into training- and test data set.*



## Selection of Architecture:

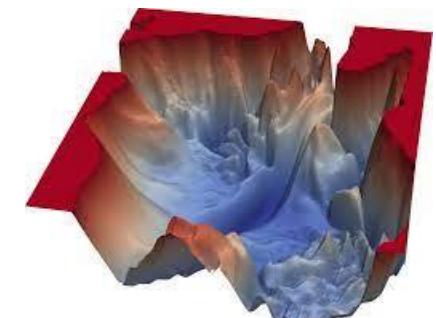
- Choose the number of layers, the number of neurons in each layer, etc.



## Training:

- Learn the affine-linear functions  $T_l(x) = W^{(l)}x + b^{(l)}$ ,  $l = 1, \dots, L$  via

$$\min_{(W^{(l)}, b^{(l)})_l} \left( \sum_{i=1}^m \mathcal{L}(\Phi_{(W^{(l)}, b^{(l)})_l}(x_i), f(x_i)) \right)$$



## Performance Check:

- For the test data set:  $\Phi_{(W^{(l)}, b^{(l)})_l}(x_i) \approx f(x_i)$



## Expressivity:

→ Which *aspects of a neural network architecture* affect the performance of AI-systems?

***Deriving general guidelines of how to choose the network architecture!***

## Learning:

→ Why does *stochastic gradient descent* converge to good local minima despite the non-convexity of the problem?

***Understanding how to best design the training algorithm!***

## Generalization:

→ Can we derive an understanding of the *performance on the test data set*?

***Providing success guarantees and error bounds!***



## Explainability:

→ Why did a trained deep neural network *reach a certain decision*?

***Ensuring trustworthiness and complying with legal regulations!***



# *A Glimpse into Generalization: Mathematical Success Guarantees*

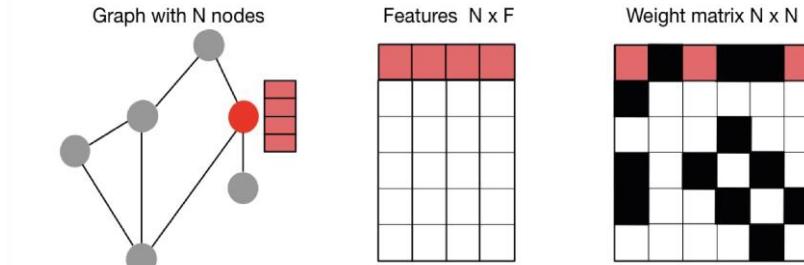


# Graph Neural Networks

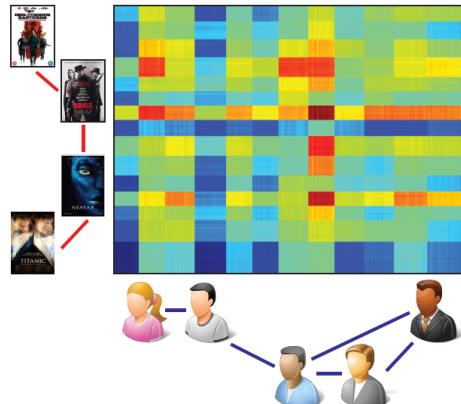
**Graph neural networks** generalize classical neural networks to signals over graph domains.

**Graph signal:**

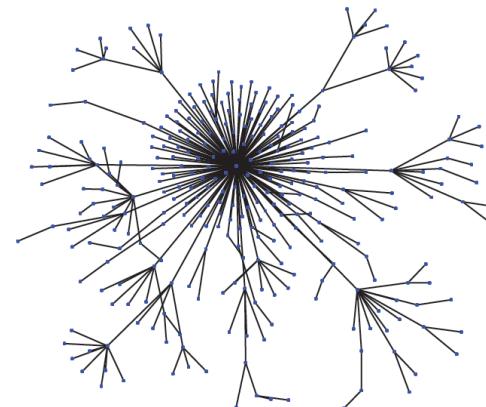
$$s : \text{graph nodes} \rightarrow \mathbb{R}^c$$



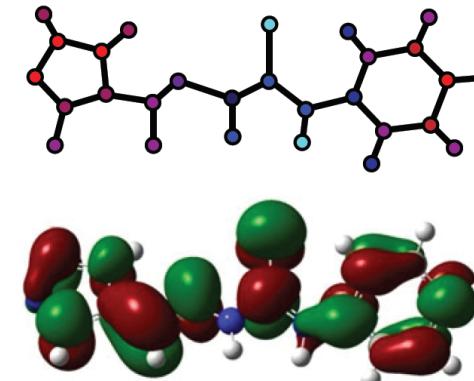
**Exemplary Applications:**



Recommender system



Fake news detection

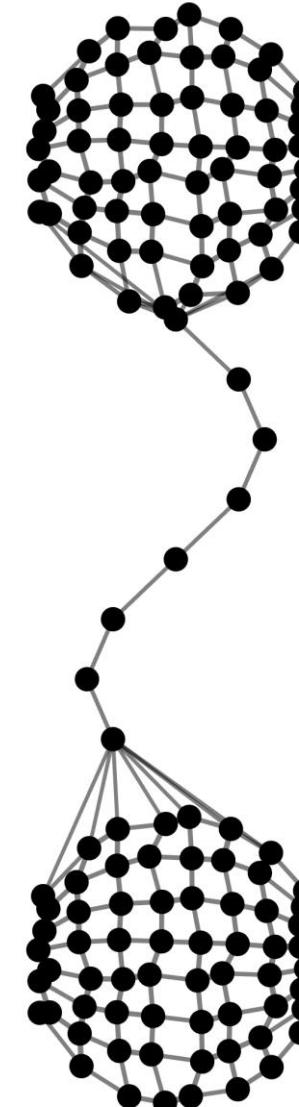
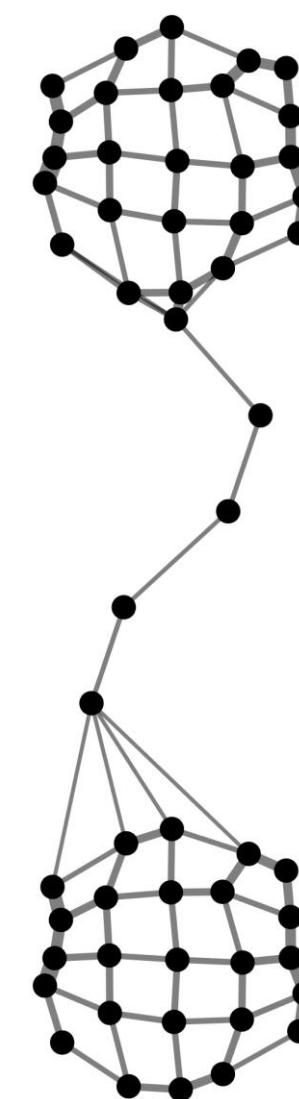


Chemistry

# A Special Form of Generalization Capability

## General Form of Generalization:

Graph neural networks should *generalize* to graphs and signals unseen in the training set.



# A Special Form of Generalization Capability

## General Form of Generalization:

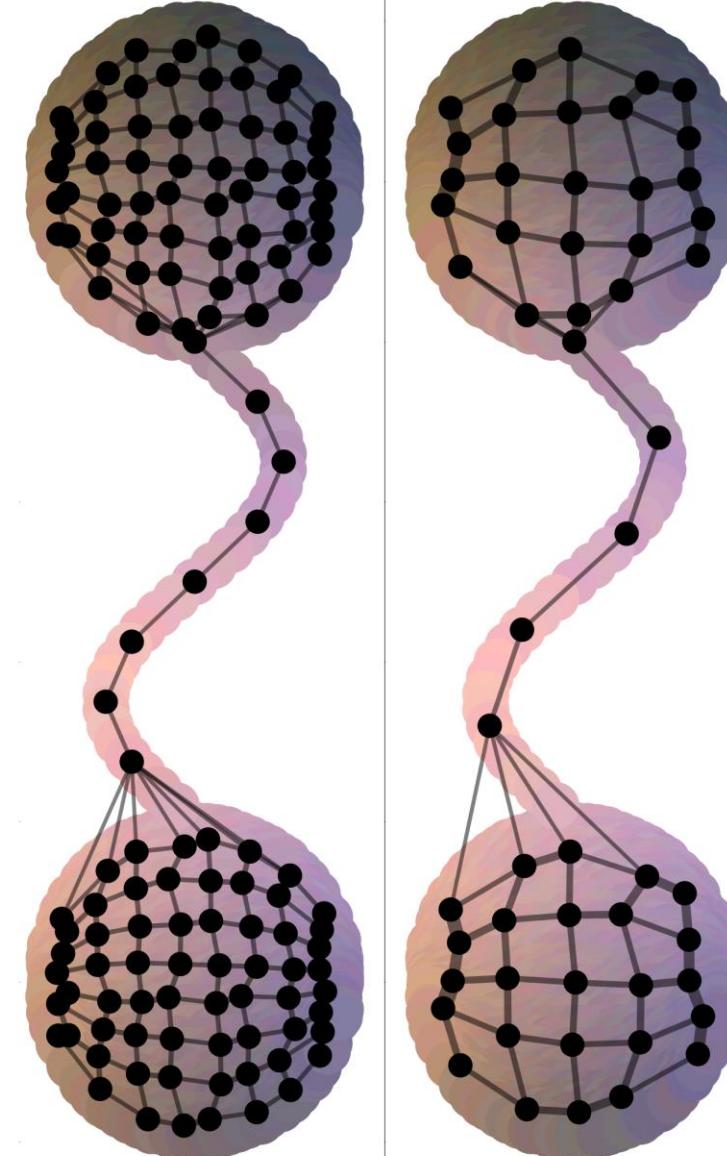
Graph neural networks should *generalize* to graphs and signals unseen in the training set.

## The Concept of Transferability:

If two graphs *model the same phenomenon*, a trained graph neural network should have approximately the *same repercussion on both graphs*.

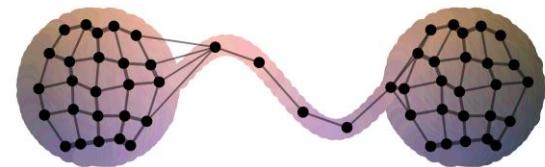
## Some Common Approaches:

- Metric (Continuum) Space Sampling
- Graphon Approach



**Theorem (Levie, Huang, Bucci, Bronstein, Kutyniok; 2021):**

“Generalization error of graph (convolutional) neural network  
 $\leq$  Transferability error of graph Laplacian + Consistency error”



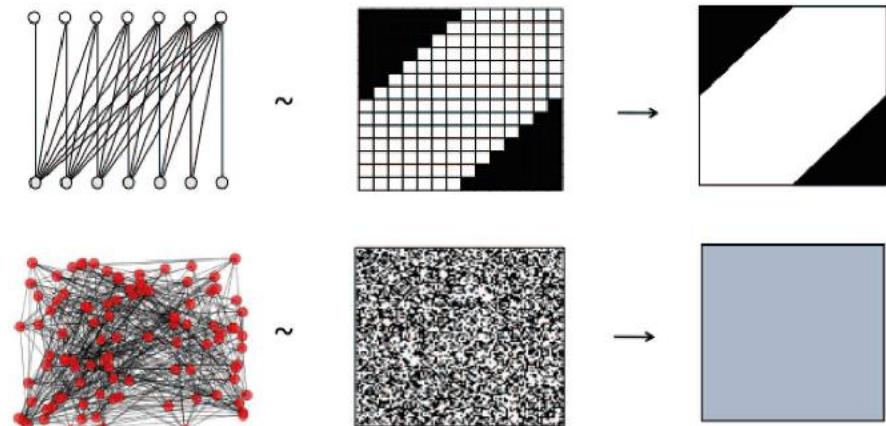
## Key Idea:

- Use graph convolutional neural networks with *specific spectral filters*; this...
  - ...solves the instability problem (Levie, Isufi, Kutyniok; 2019)
  - ...solves the computational problem for a large class of filters.
- Introduce *functional analytic framework* akin the Nyquist—Shannon digital signal processing
- Compare action of graph network on *two similar graphs via metric (continuum) space*

# Further Results on Generalization Ability of GNNs

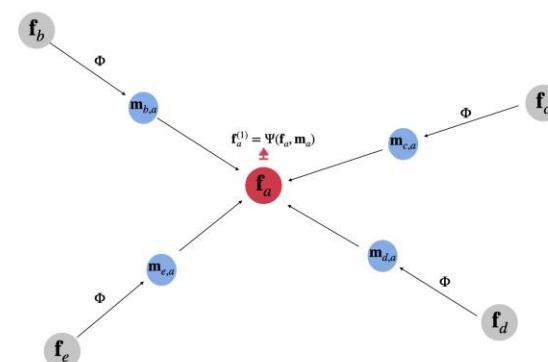
## Graph Convolutional Neural Networks:

- *Similar results on transferability* for the *graphon* setting (Maskey, Levie, Kutyniok; 2022 & 2024).
- This builds on (Ruiz, Wang, Ribeiro; 2021).



## Message Passing Graph Neural Networks:

- *Non-asymptotic generalization bounds*, only depending on the regularity of the network and space (Maskey, Levie, Lee, Kutyniok; 2023).
- This builds on (Garg, Jegelka, Jaakkola; 2020), (Verma, Zhang; 2019), (Yehudai, Fetaya, Meirom, Chechik, Maron; 2022).



# Towards a Mathematical Foundation for Reliable AI

## Expressivity:

→ Which *aspects of a neural network architecture* affect the performance of AI-systems?

***Deriving general guidelines of how to choose the network architecture!***

## Learning:

→ Why does *stochastic gradient descent* converge to good local minima despite the non-convexity of the problem?

***Understanding how to best design the training algorithm!***

## Generalization:

→ Can we derive an understanding of the *performance on the test data set*?

***Providing success guarantees and error bounds!***



## Explainability:

→ Why did a trained deep neural network *reach a certain decision*?

***Ensuring trustworthiness and complying with legal regulations!***

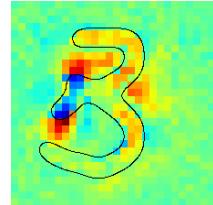
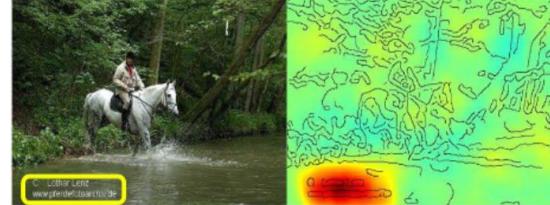


# *Explainability: A Mathematical Approach*



# Some General Thoughts about Explainability

**Main Goal:** We aim to *understand* decisions of ``black-box" predictors!



Source: Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller; 2019)

## Selected Questions:

- What *exactly* is relevance in a mathematical sense?
- Can we develop a theory for *optimal relevance maps*?
- Can we derive meaningful *higher level explanations*?



## Vision:

*Questioning the AI as a human about the reason for a decision!*



***The explainability approach itself needs to be reliable!***

# Information Theory: Rate-Distortion Viewpoint

## The Setting:

→ Let  $\Phi : [0,1]^d \rightarrow [0,1]$  be a *neural network*.



## Expected Distortion:

$$D(S) = D(\Phi, x, S) = \mathbb{E} \left[ \frac{1}{2} (\Phi(x) - \Phi(y))^2 \right]$$

## Rate-Distortion Function:

$$R(\epsilon) = \min_{S \subseteq \{1, \dots, d\}} \{|S| : D(S) \leq \epsilon\}$$

Use this viewpoint for the definition of a relevance map!

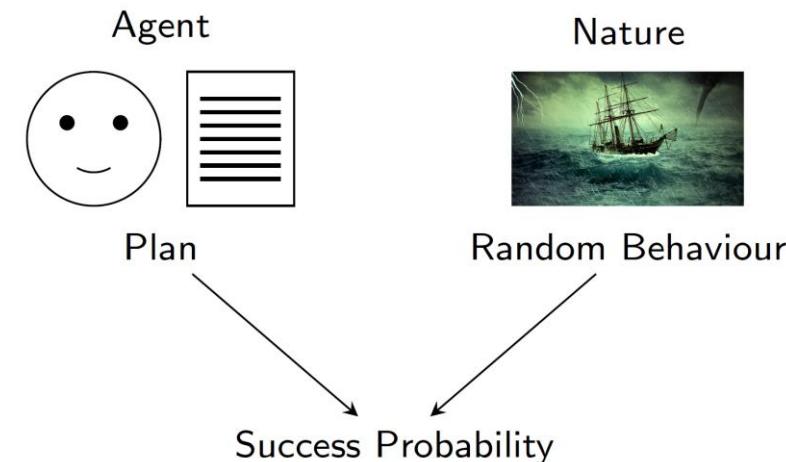
# Rate-Distortion Explanation (RDE)

**Theorem (Wäldchen, Macdonald, Hauch, Kutyniok; 2021):**

*“Solving this problem is  $NP^{PP}$  –complete, even computing an approximation is  $NP$  –hard.”*

## Some Examples:

- Planning under uncertainties
- Finding maximum a-posteriori configurations in graphical models
- Maximizing utility functions in Bayesian networks



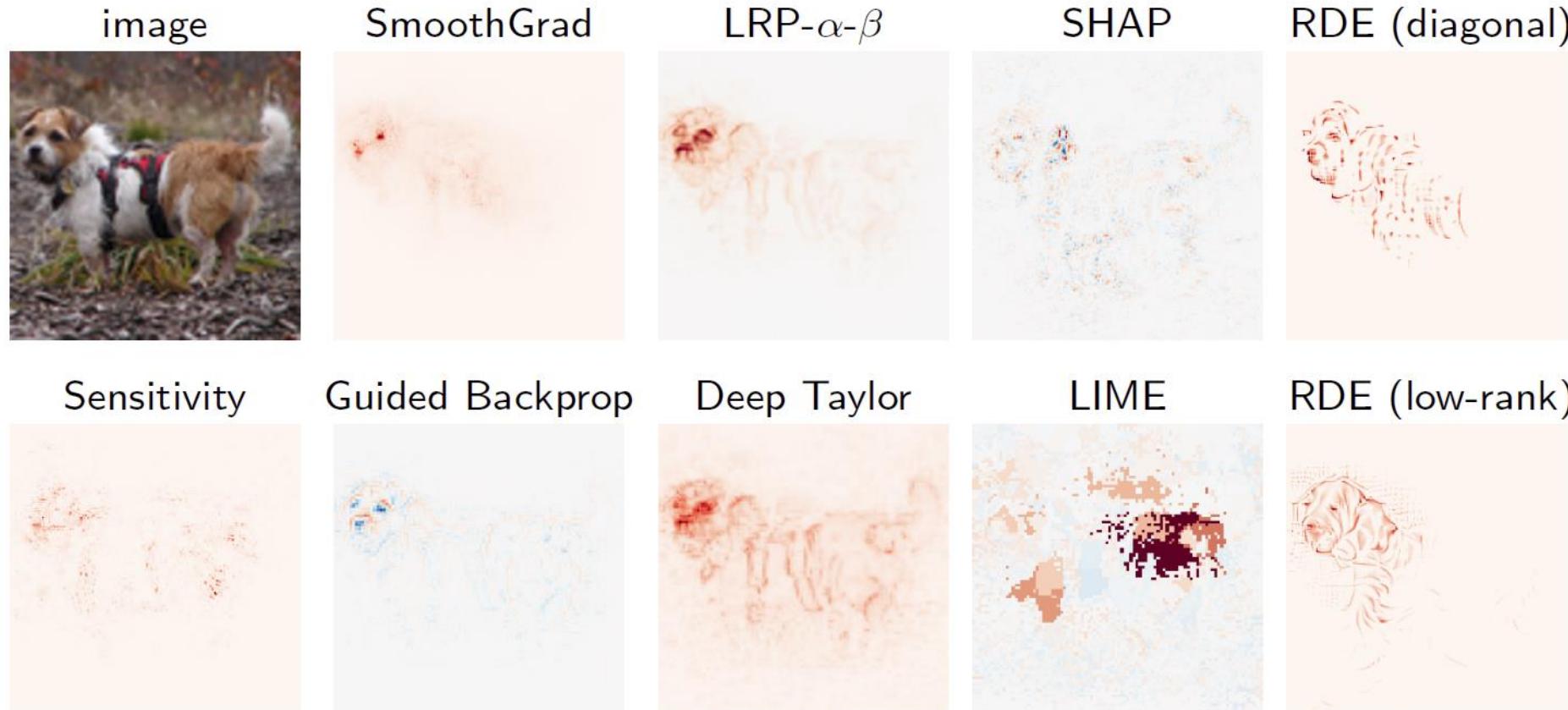
**Computable Variant of RDE (Macdonald, Wäldchen, Hauch, Kutyniok, 2020):**

$$\text{minimize } D(s) + \lambda \|s\|_1 \quad \text{subject to} \quad s \in [0,1]^d$$

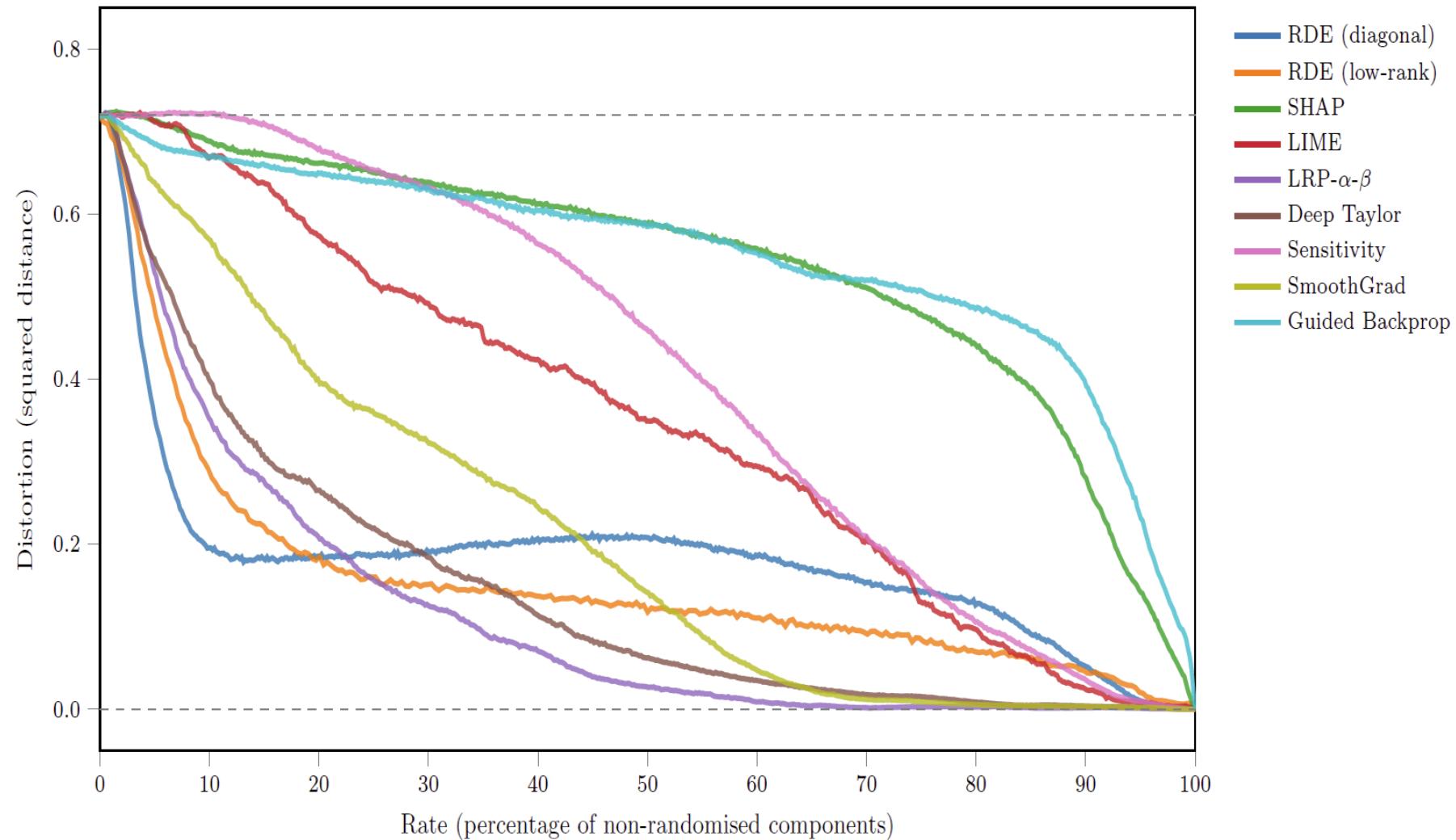
*...allows rigorous mathematical performance analysis!*



# STL-10 Experiment



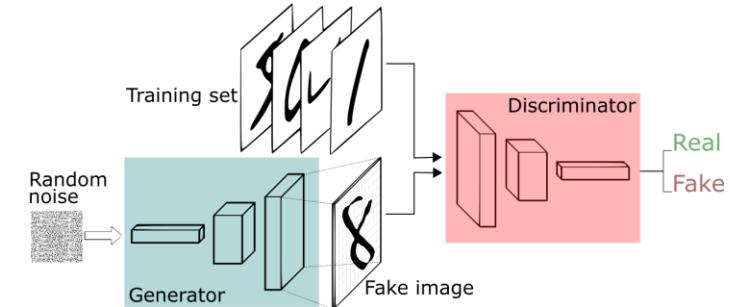
# STL-10 Experiment



## *Extending to More Realistic Scenarios?*

### **Extension 1 (Heiß, Levie, Resnick, Kutyniok, Bruna; 2020):**

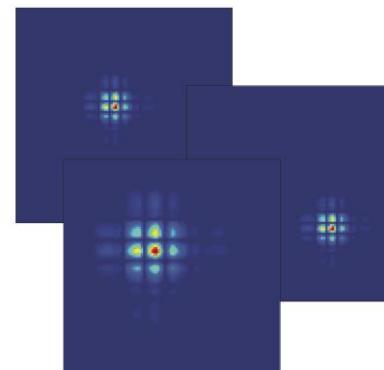
- Choose the obfuscations more natural
- Example: Apply an inpainting GAN



## *Obtaining Higher-Level Explanations?*

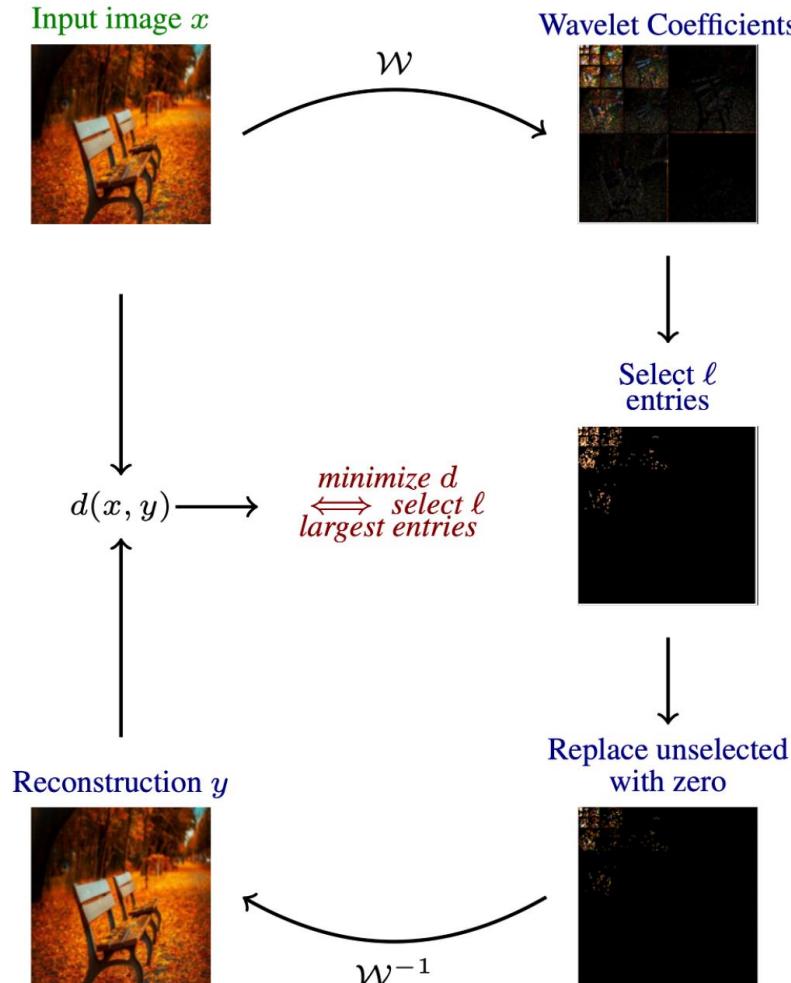
### **Extension 2 (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021):**

- Apply RDE to decompositions of the data
- Example: Take a wavelet decomposition of an image.
- *CartoonX*

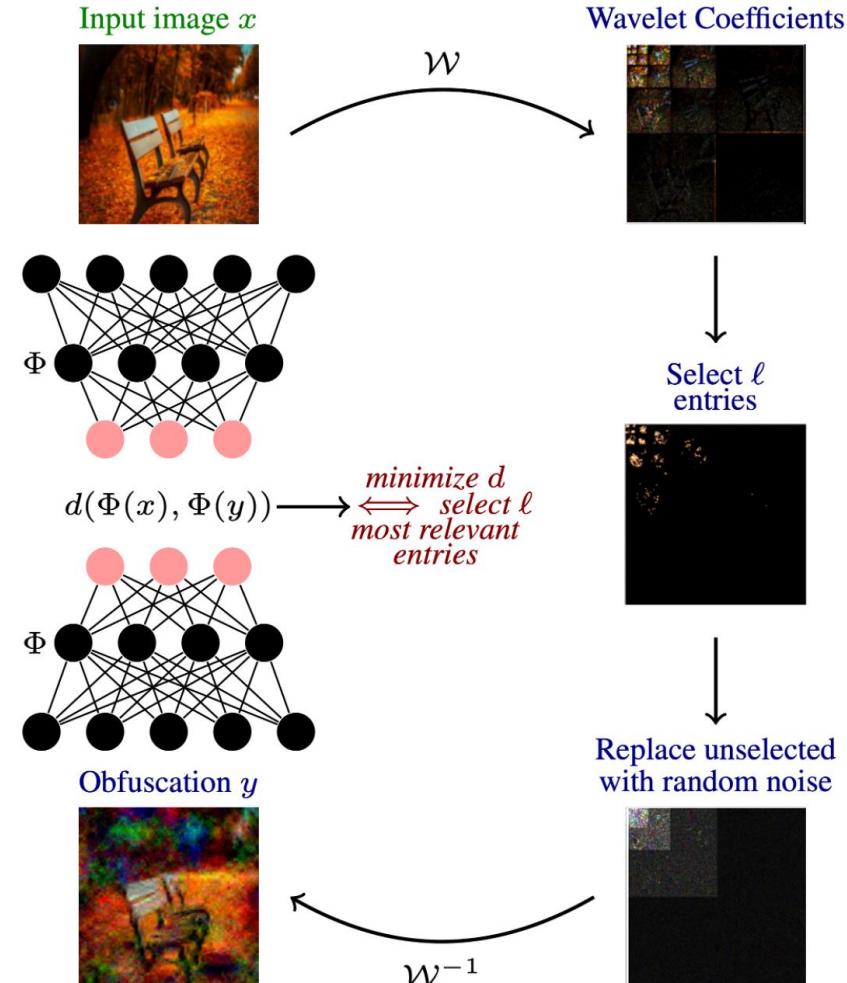


# Idea of CartoonX (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2022)

## Wavelet Compression

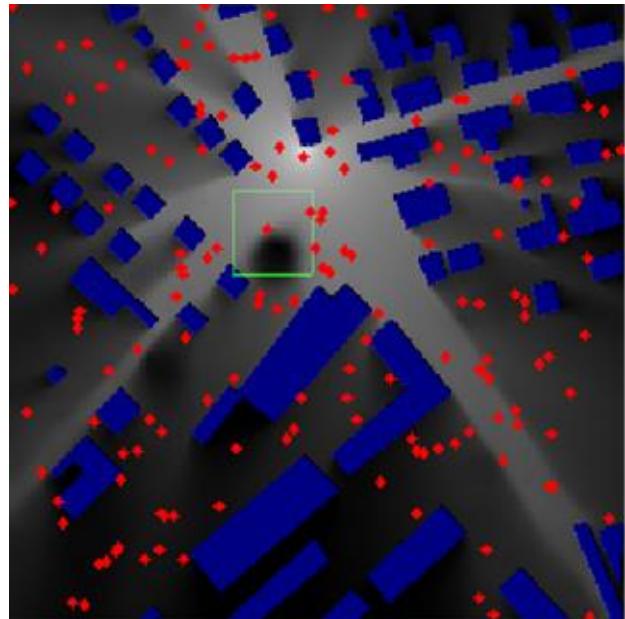


## CartoonX

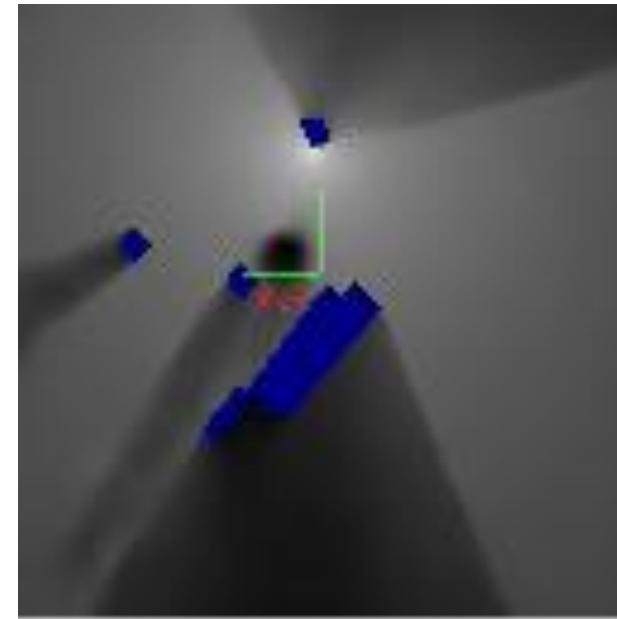


# Explainability: Understanding Seemingly Wrong Decisions

Example from Telecommunication:



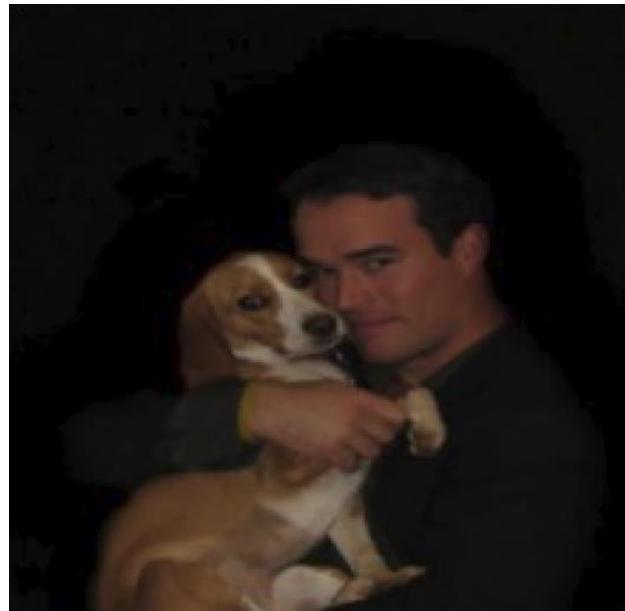
Estimated RadioMap via RadioUNet  
(Levie, Cagkan, Kutyniok, Caire; 2020)



Rate-Distortion Explanation  
(Heiß, Levie, Resnick, Kutyniok, Bruna; 2020):

# Explainability: Understanding Wrong Decisions

Example from Imaging:



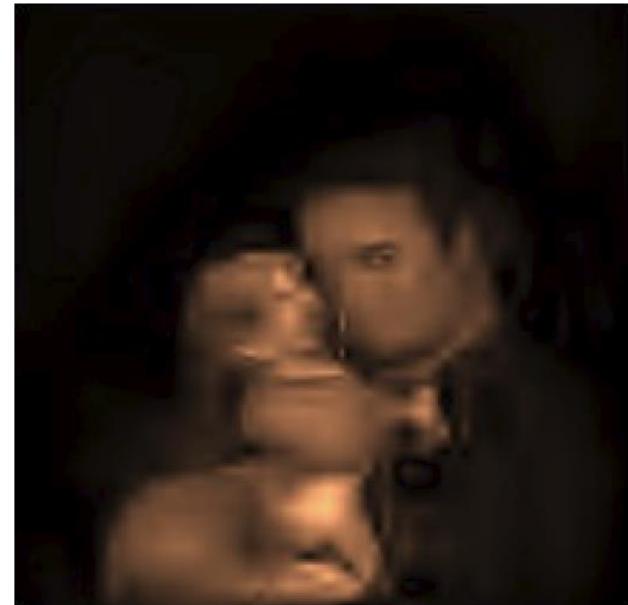
Wrong decision by AI:  
Diaper



Wrong decision by AI:  
Screw

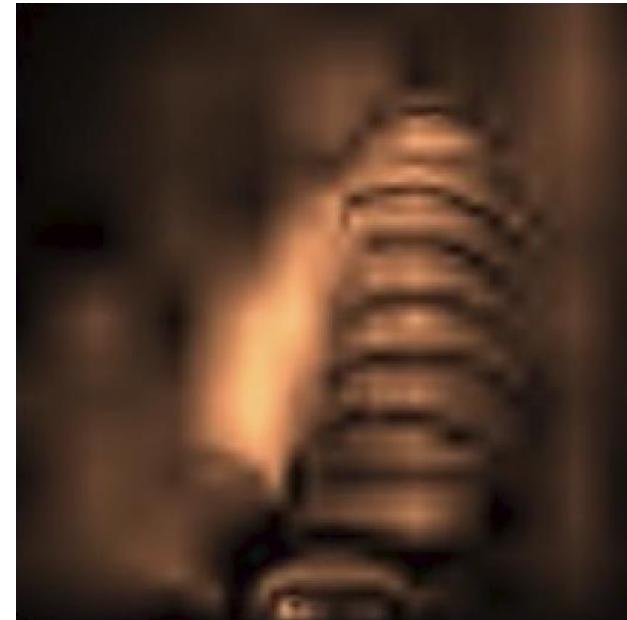
# Explainability: Understanding Wrong Decisions

Example from Imaging:



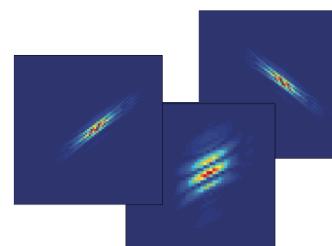
Explanation by CartoonX

(Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021)



Explanation by CartoonX

**Extension: ShearletX (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023)!**



# Mathematical Underpinning: Ensuring Reliability

## Problem:



## Theorem (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023):

Let  $x \in L^2[0,1]^2$  be an image modeled as a  $L^2$ -function. Let  $m$  be a bounded mask on the shearlet coefficients of  $x$  and let  $y$  be the image masked in shearlet space with mask  $m$ . Then, we have

$$WF(y) \subset WF(x)$$

and thus masking in shearlet space does not create new edges.

# Towards a Mathematical Foundation for Reliable AI

## Expressivity:

→ Which *aspects of a neural network architecture* affect the performance of AI-systems?

***Deriving general guidelines of how to choose the network architecture!***

## Learning:

→ Why does *stochastic gradient descent* converge to good local minima despite the non-convexity of the problem?

***Understanding how to best design the training algorithm!***

## Generalization:

→ Can we derive an understanding of the *performance on the test data set*?

***Providing success guarantees and error bounds!***



## Explainability:

→ Why did a trained deep neural network *reach a certain decision*?

***Ensuring trustworthiness and complying with legal regulations!***



# *A Glimpse into Problems of Compliance with the EU AI Act*



# Challenges in Artificial Intelligence: EU AI Act

## Exemplary Requirements from the EU AI Act:

- Article 43: Conformity Assessment
- Article 50: Transparency Obligations for Providers and Deployers
- Article 86: *Right to Explanation* of Individual Decision-Making

Current Danger:



- *Enormous costs* for small-size companies and start-ups.
- *Uncertainty and potential disadvantage* in Europe



Differential Privacy (Formalization of “Privacy”):

The algorithm  $\mathcal{A}$  is said to provide  $\varepsilon$ -differential privacy if, for all datasets  $D_1$  and  $D_2$  that differ on a single element, and all subsets  $S$  of  $\text{im}(\mathcal{A})$ :

$$\frac{P(\mathcal{A}(D_1) \in S)}{P(\mathcal{A}(D_2) \in S)} \leq \varepsilon.$$

## Algorithmic Transparency (Boche, Fono, Kutyniok; 2024):

An algorithmic implementation is *transparent* in a *given computing model* if the realization  $\mathcal{A}_f$  of some function  $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$  by an algorithm  $\mathcal{A}$  is not altered by its implementation in the computing model. We then say that  $f$  allows for a *transparent algorithmic implementation* in the given computing model.



**A „Formalization“ of the legal requirements of the EU AI Act would allow a fair, low-cost, and automatic verification!**

# Research Project of the Bavarian AI Act Accelerator



## Exemplary Requirements from the EU AI Act:

- Article 43: Conformity Assessment
- Article 50: Transparency Obligations for Providers and Deployers
- Article 86: *Right to Explanation* of Individual Decision-Making

### Current Danger:



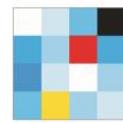
- *Enormous costs* for small-size companies and start-ups
- *Uncertainty and potential disadvantage* in Europe

## Algorithmic Transparency (Boche, Fono, Kutyniok; 2024):

An algorithmic implementation is *transparent* in a *given computing model* if the realization  $\mathcal{A}_f$  of some function  $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$  by an algorithm  $\mathcal{A}$  is not altered by its implementation in the computing model. We then say that  $f$  allows for a *transparent algorithmic implementation* in the given computing model.



**A „Formalization“ of the legal requirements of the EU AI Act would allow a fair, low-cost, and automatic verification!**



Bayerisches Staatsministerium  
für Digitales



### Differential Privacy (Formalization of “Privacy”):

The algorithm  $\mathcal{A}$  is said to provide  $\epsilon$ -differential privacy if, for all datasets  $D_1$  and  $D_2$  that differ on a single element, and all subsets  $S$  of  $\text{im}(\mathcal{A})$ :

$$\frac{P(\mathcal{A}(D_1) \in S)}{P(\mathcal{A}(D_2) \in S)} \leq \epsilon.$$

## Theorem (Boche, Fono, Kutyniok; 2024):

There exists an algorithm  $\mathcal{A}$  with *transparent implementation in the Turing model* realizing  $\mathcal{A}_f$  if and only if  $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$  is Borel-Turing computable.

## Theorem (Boche, Fono, Kutyniok; 2024):

There exists an algorithm  $\mathcal{A}$  *with transparent implementation in the analog (Blum-Shub-Smale) model* realizing  $\mathcal{A}_f$  if and only if  $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$  is analog (BSS) computable.

***Digital hardware can also cause problems of compliance with the EU AI Act!***

## Expressivity:

→ Which *aspects of a neural network architecture* affect the performance of AI-systems?

***Deriving general guidelines of how to choose the network architecture!***

## Learning:

→ Why does *stochastic gradient descent* converge to good local minima despite the non-convexity of the problem?

***Understanding how to best design the training algorithm!***

## Generalization:

→ Can we derive an understanding of the *performance on the test data set*?

***Providing success guarantees and error bounds!***



## Explainability:

→ Why did a trained deep neural network *reach a certain decision*?

***Ensuring trustworthiness and complying with legal regulations !***



***...toward the core of the reliability and sustainability problem!***

# Computing in the 21th Century

## Importance of Computing:

- ❖ Digital Transformation → *Ubiquitous Computing*
- ❖ (Generative) AI → *Large-Scale Computing*
- ❖ Virtual Reality → *Fast Computing*
- ❖ Information and Communication Technology (ICT) → *Distributed Computing*



***Computing is the heart of modern technology, powering innovation, transforming industries, and shaping the future of our society!***

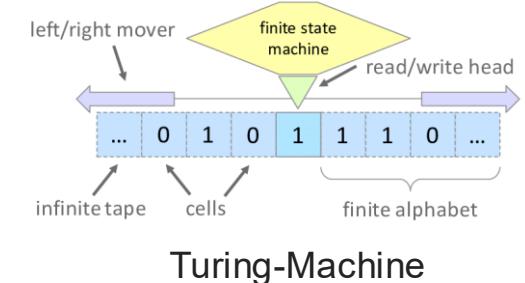
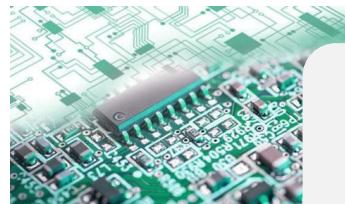
# ***Reliable and Sustainable AI: The Need to Rethink Current Computing!***



# Are There Fundamental Limitations to Be Aware Of?

## ...Delving Deeper!

What can actually be *computed on digital hardware*?



A *computable problem (function)* is one for which the input-output relation can be computed on a digital machine for any given accuracy.

## What about Non-Computability?

*Non-computable problems can be tackled successfully in practice, if limited precision succeeds!*

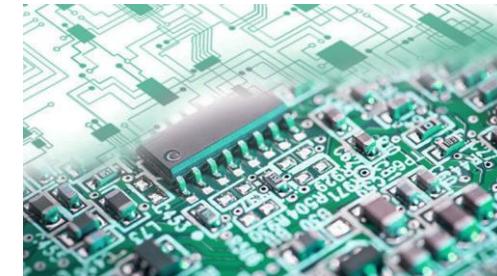


**But we have no guarantees of correctness, hence no reliability!**

# Very Disappointing News

## Theorem (Boche, Fono, Kutyniok; 2023):

The solution of a finite-dimensional inverse problem is *not* (*Turing*)-computable (by a deep neural network).



**Solution Set:** For  $A \in \mathbb{C}^{m \times N}$  and  $y \in \mathbb{C}^m$  let

$$\Psi(A, y) := \arg \min_{x \in \mathbb{C}^N} \|x\|_1 \text{ such that } \|Ax - y\|_2 \leq \epsilon.$$

## Theorem (Boche, Fono, Kutyniok; 2023):

Fix parameters  $\epsilon \in \left(0, \frac{1}{4}\right)$ ,  $N \geq 2$ , and  $m < N$ . There does *not exist a (Turing-computable function*  $\widehat{\Psi} : \mathbb{C}^{m \times N} \times \mathbb{C}^m \rightarrow \mathbb{C}^N$  such that

$$\sup_{(A, y) \in \mathbb{C}^{m \times N} \times \mathbb{C}^m} \|\Psi(A, y) - \widehat{\Psi}(A, y)\|_2 < \frac{1}{4}.$$

# More Problems with Digital Hardware

## Theorem (Boche, Fono, Kutyniok; 2023):

Many classification problems are also *not (Turing) computable!*



## Theorem (Bacho, Boche, Kutyniok; 2024):

Computing the solutions to the Laplace and the diffusion equation on digital hardware causes a *complexity blowup*.

## Theorem (Boche, Fono, Kutyniok; 2023):

The Pseudo Inverse is *not (Banach-Mazur) computable!*

## Theorem (Lee, Boche, Kutyniok; 2024):

Finding the solution of most optimization problems is *not (Turing)-computable*; it can *not even be approximated* by a Turing computable function!

## What now?

Theory tells us...



### Theorem (Boche, Fono, Kutyniok; 2024):

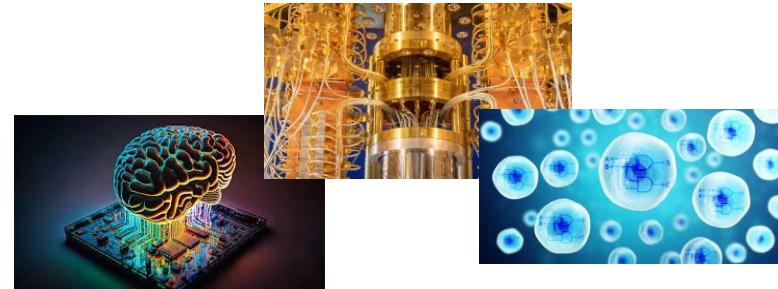
The solution of a finite-dimensional inverse problem is *computable* (by a deep neural network) on an *analog (Blum-Shub-Smale) machine!*

***Reliability for certain problem settings requires novel hardware!***

### Exciting Future Developments:

- Neuromorphic computing
- Biocomputing
- Quantum computing

*Highly energy efficient!*



<https://www.ecologic-computing.com>

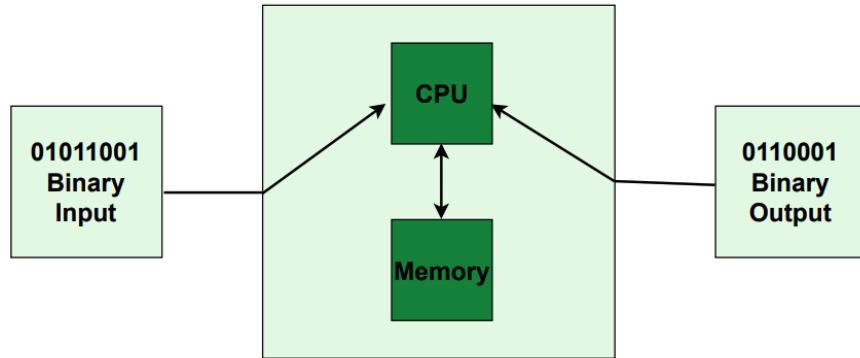
***Reliable and Sustainable AI...by Next Generation AI Computing!***



# *Next Generation AI Computing*



Von Neumann architecture

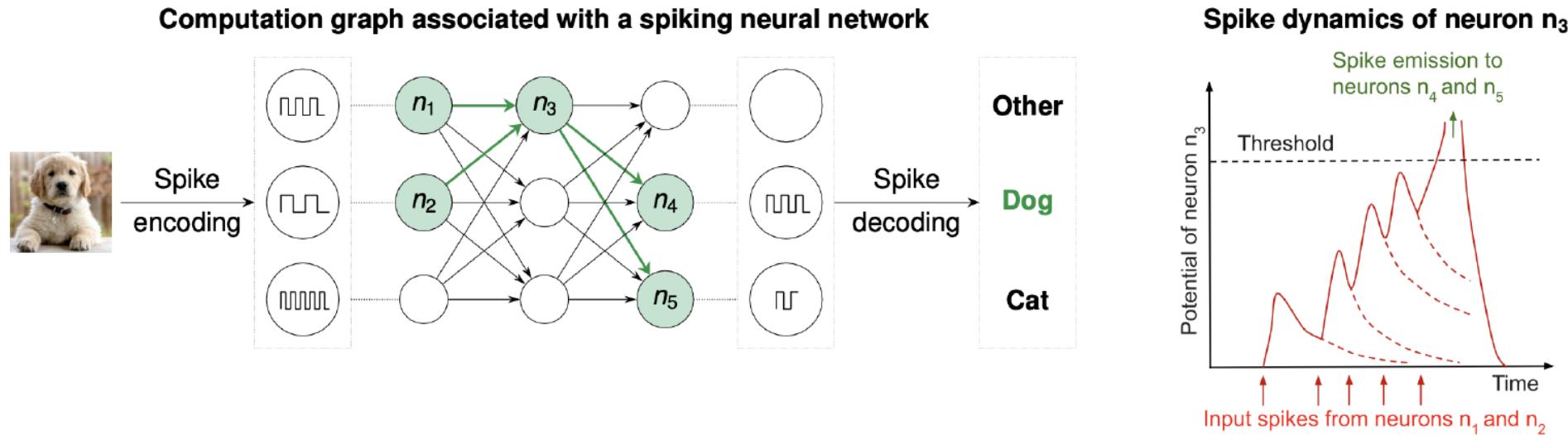


## Features of Neuromorphic Hardware:

- Closer to the human brain.
- Energy efficiency.
- Execution speed.
- Robustness.
- ....

***What is the correct type of neural network?***

# The Framework of Spiking Neural Networks



## Remarks:

- *More biologically realistic* than first and second generation artificial neurons.
- Information is encoded in the *timing of individual spikes*.
- Numerous models for spiking neurons exist; one of those is the *Spike Response Model*.

**Time is one crucial factor in this model!**

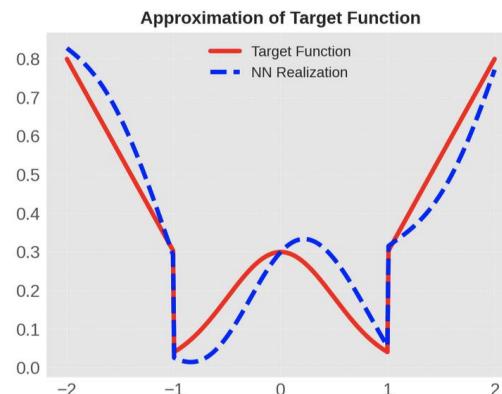
# Our Focus: Expressivity

**How expressive are spiking neural networks compared to classical networks?**



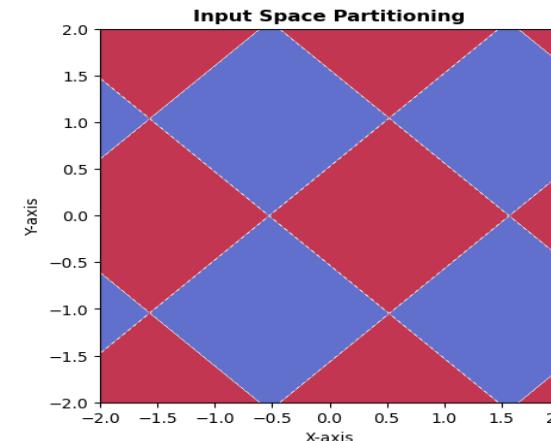
## Function approximation:

How well do the realizations of a neural network approximate a target function?



## Number of linear regions:

How does the network partition the input space, affecting decision boundaries?



**Generalization:** Neuman, Dold, Petersen; 2024

# The Spike Response Model (SRM)

**Definition:** A *SRM (spiking neural) network*  $\Phi$  is a directed graph  $(V, E)$  and consists of a finite set  $V$  of spiking neurons, a subset  $V_{in} \subset V$  of input neurons, and a set  $E \subset V \times V$  of synapses. Each *synapse*  $(u, v) \in E$  is associated with

- a *synaptic weight*  $w_{uv} \geq 0$ ,
- a *synaptic delay*  $d_{uv} \geq 0$ ,
- and a *response function*  $\epsilon_{uv} : \mathbb{R} \rightarrow \mathbb{R}$ .

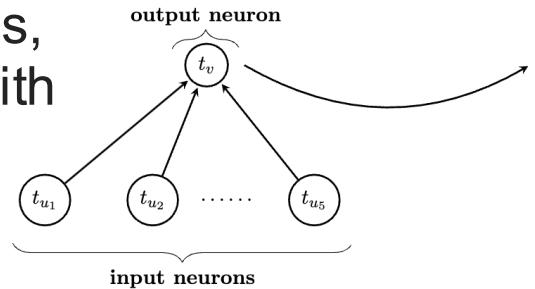
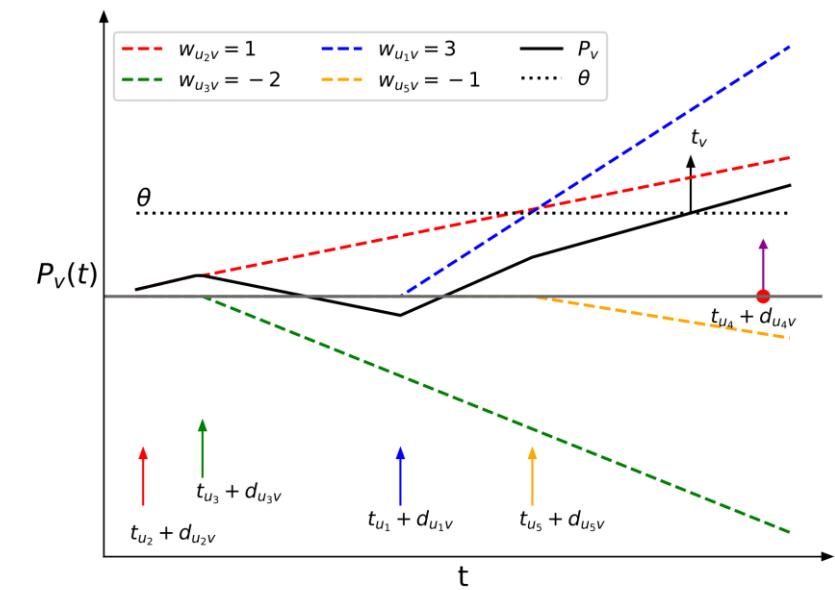
Each neuron  $v \in V \setminus V_{in}$  is associated with

- a *firing threshold*  $\theta_v > 0$ ,
- and a *membrane potential*  $P_v : \mathbb{R} \rightarrow \mathbb{R}$ ,

which is given by

$$P_v(t) = \sum_{(u,v) \in E} \sum_{t_u^f \in F_u} w_{uv} \epsilon_{uv}(t - t_u^f)$$

with  $F_u = \{t_u^f : 1 \leq f \leq n \text{ for some } n \in \mathbb{N}\}$  being the set of *firing times* of neuron  $u$ , i.e., times  $t$  whenever  $P_u(t)$  reaches  $\theta_u$ .



## Theorem (Singh, Fono, Kutyniok; 2024):

Let  $L, d \in \mathbb{N}$ ,  $[a, b]^d \subseteq \mathbb{R}$ , and let  $\Psi$  be a classical ReLU-neural network of depth  $L$  and width  $d$ . Then there exists a SRM network  $\Phi$  with  $N(\Phi) = N(\Psi) + L(2d + 3) - (2d + 2)$  and  $L(\Phi) = 3L - 2$  that realizes the output of  $\Psi$  on  $[a, b]^d$ .

## Theorem (Singh, Fono, Kutyniok; 2024):

For  $d \geq 2$ ,  $\ell := \lceil \log_2(d + 1) \rceil + 1$ . For  $\Phi$  being a 1-layer SRM network with one output neuron  $\nu$  and  $d$  input neurons  $u_1, \dots, u_d$  with  $w_{u_i \nu} \in \mathbb{R}_{>0}$  for  $i \in \{1, \dots, d\}$ . Then

- (1)  $t_\Phi$  can be realized by a classical ReLU-neural network  $\Psi$  with  $L(\Psi) = \ell$  and  $N(\Phi) \in O(t \cdot 2^{2d^3+3d^2+d})$ .
- (2)  $t_\Phi$  can be realized by a classical ReLU-neural network  $\Psi$  with  $L(\Psi) \in O(d)$  and  $N(\Phi) \in O(8^d)$ .

## Theorem (Singh, Fono, Kutyniok; 2024):

For  $d \geq 2$ , there exists a single layer SRM network  $\Phi$ , with linear response function, with one output neuron  $v$  and  $d$  input neurons, such that

$$|\Phi(x_1, \dots, x_d) - \min\{x_1, \dots, x_d\}| \leq \frac{(d-1)\theta}{2dw}, \text{ for all } x_1, \dots, x_d \in \mathbb{R},$$

where  $\theta > 0$  is the threshold of  $v$  and  $w > 0$  is the weight of each connection.

## Comparison with ReLU-neural networks:

- For any classical ReLU-neural network, irrespective of depth, to approximate  $\min$ , *each hidden layer must have at least  $d$  neurons*.
- Under certain assumption on the weights and data distribution, a classical ReLU-neural network of *depth 3 is necessary* to efficiently approximate  $\min$ .

***Spiking neural networks are strictly more expressive!***

## Theorem (Singh, Fono, Kutyniok; 2024):

Let  $\Phi$  be a one-layer SRM network with linear response, with input dimension  $d$  and a single output neuron. Then the *maximum number of linear regions*  $|\mathcal{R}|$  satisfies the *tight* upper bound

$$|\mathcal{R}| \leq 2^d - 1$$

## Some Remarks:

- In comparison, one ReLU neuron divides the space *only into two regions*, regardless of  $d$ .
- A single spiking neuron divides the input space with the *same number of linear regions* as a classical two-layer neural network with  $d$  hidden neurons.

***Spiking neural networks are strictly more expressive!***

# Vision of our Project



Next Generation  
AI Computing



G. Kutyniok



H. Boche



S. Speidel



F. Fitzek



Provably reliable  
AI-based communication systems  
which comply with the EU AI Act!



Low cost, trust-  
worthy medical AI-devices  
for diagnosis and therapy!



**Comprehensive theory-driven framework  
for next generation (Green) AI-systems:  
Optimally application-adapted hard-software combinations  
for maximal energy-efficiency and reliability!**



Next generation  
robotics with reliable robot brains  
and life-long learning capabilities!

# Team at our Chair for



Next Generation  
AI Computing



Dr. Ernesto Araya



Dr. Massimiliano Datres



Adalbert Fono



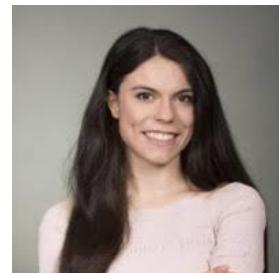
Vit Fojtek



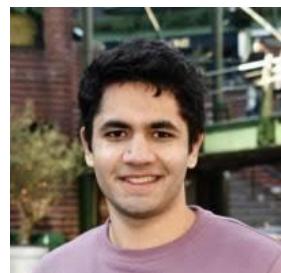
Dr. Jianfei Li



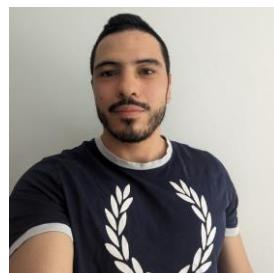
Duc Anh Nguyen



Sarah Pardo



Manjot Singh



Dr. Juan Suarez Cardona



Jonas von Berg

# *Conclusions*

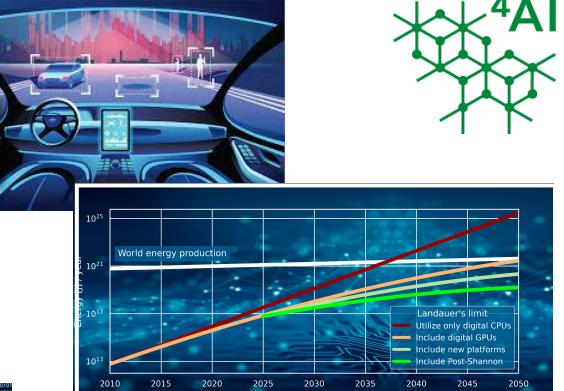


# Conclusions

## ***Current Problems with Reliability and Sustainability of AI!***

### Taking a Mathematical Perspective:

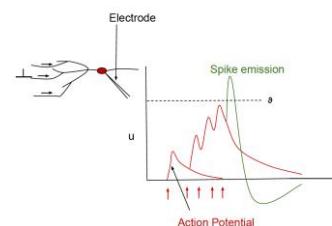
- Analysis of *Expressivity, Training, Generalization*
- *Explainability*: Rate-Distortion Explanation / CartoonX



## ***Fundamental Problem with Digital Hardware!***

### Next Generation AI Computing:

- *Analog hardware* such as neuromorphic computing!
- *Analog AI systems* such as spiking neural networks!



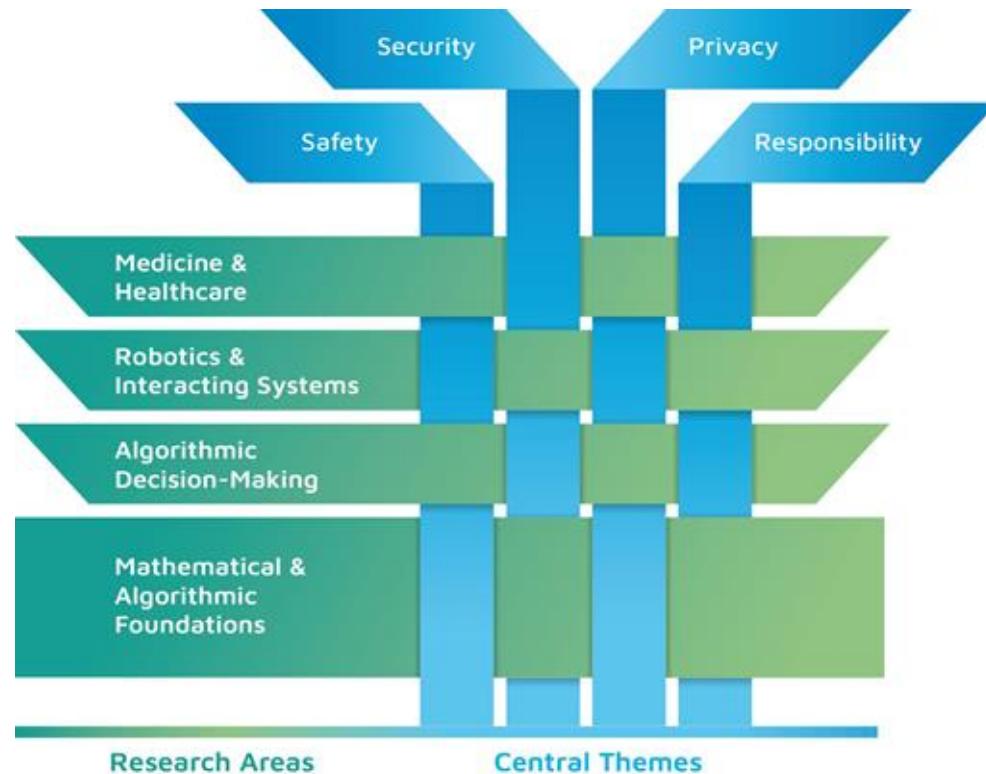
## ***Vision: Mathematically Reliable and Sustainable AI!***

# Konrad Zuse School of Excellence in Reliable AI

(<https://zuseschoolrelai.de>)



Konrad Zuse  
School of Excellence  
in Reliable AI



Munich, Germany



**Mission:** Train future generations of AI experts in Germany who combine technical brilliance with awareness of the importance of AI's reliability



*Thank you very much  
for your attention!*

**References available at:**

[www.ai.math.lmu.de/kutyniok](http://www.ai.math.lmu.de/kutyniok)

**Survey Papers:**

Berner, Grohs, Kutyniok, Petersen, The Modern Mathematics of Deep Learning, 2021

Fono, Singh, Araya, Petersen, Boche, Kutyniok, Sustainable AI: Mathematical Foundations of Spiking Neural Networks, 2025

**Related Book:**

Grohs and Kutyniok, eds., Mathematical Aspects of Deep Learning, Cambridge University Press, 2022.