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Fourth Industrial Revolution by Artificial Intelligence

Radical Change of our Society in its Full Breadth! J




Challenges in Artificial Intelligence: Reliability

Problems with Safety

Example:
Accidents involving robots

Problems with Security

Example:
Risks of hacking into Al systems

Problems with Privacy

Example:
Privacy violations of health data

Problems with Responsibility

Example:
Black-box and biased decisions

MATH

Current major problem
worldwide:

Lack of reliability of
Al technology!

Deep understanding from a
mathematical perspective!
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Challenges in Artificial Intelligence: Sustainability / Energy Efficiency ’%J

Oracle will use three small
nuclear reactors to power
new 1-gigawatt Al data
center

NEWEN By Jowi Morales published 8 hours ago

Source: Twitter/X, Sept. 2024
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Challenges in Artificial Intelligence: Sustainability / Energy Efficiency )%J

-
©
U]
>
~
>
(@)]
fanfg
()]
c
L

2030 2035 2040 2045 2050

2010 2015 2020 2025
year

Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021

LUDWIG-
MAXIMILIANS-

UNIVERSITAT
MUNCHEN




MATH
Challenges in Artificial Intelligence: Sustainability / Energy Efficiency )%J

Landauer's limit
Utilize only digital CPUs
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Challenges in Artificial Intelligence: Sustainability / Energy Efficiency )%J

Landauer's limit
Utilize only digital CPUs
e==» |nclude digital GPUs
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Challenges in Artificial Intelligence: Sustainability / Energy Efficiency )%J

Utilize only digital CPUs
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Challenges in Artificial Intelligence: Sustainability / Energy Efficiency )%J
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L Utilize only digital CPUs
e==» |nclude digital GPUs
Novel
Mathematical
Method!
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Taking a Mathematical Perspective

MATH



Deep Neural Networks

Key Goal of McCulloch and Pitts (1943):

= Introduce artificial Intelligence!

Artificial Neurons:
n

flxy,.o,x) = p le-wi—b

=1

Definition of a Neural Network:

A deep neural network is a function ®@: R? — RNL of the form

O O
O(x) =Tpp(Tp—q p(p(T1(X)) ..)),  x €RY, %3:‘{;‘.&\?"\

AXKA ARXKA
A'A‘A ( @, V‘V‘V‘; O VI 'o

with
T;: RNVi-1 » RNt [ =1,...,L, where Ty(x) = W® x + pO,




Workflow of Applying Deep Neural Networks

Starting Point :
= Samples (xi,f(xi)):;l of a function f : M - {1,2,...K}.

Split into training- and test data set.

Selection of Architecture:

= Choose the number of layers, the number of neurons in each layer,
etc.

Training:
= Learn the affine-linear functions T;(x) = W®x + b1 1 =1, ...,L via
m
min z L‘(CI)(W(z)’b(z)) (), f(xy))
(w®,p®) \7= l
Performance Check:
= For the test data set: CD(W(D,b(l))l(xi) ~ f(x;)
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Towards a Mathematical Foundation for Reliable Al )%J

Expressivity:

= Which aspects of a neural network architecture affect the performance of Al-systems?
Deriving general guidelines of how to choose the network architecture!

Learning:

= Why does stochastic gradient descent converge to good local minima despite the non-convexity of
the problem?

Understanding how to best design the training algorithm!
Generalization:

= Can we derive an understanding of the performance on the test data set? lv
Providing success guarantees and error bounds!

Explainability:

= Why did a trained deep neural network reach a certain decision?
Ensuring trustworthiness and complying with legal requlations! JEERT

Artificial

Intelligence Act
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A Glimpse into Generalization:
Mathematical Success Guarantees

MATH
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Graph Neural Networks %

Graph neural networks generalize classical neural networks to signals over graph domains.

Graph with N nodes Features Nx F Weight matrix N x N

Graph signal: I

s . graph nodes — R¢

Exemplary Applications:

Recommender system Fake news detection Chemistry




: N - MATH
A Special Form of Generalization Capability )%J

General Form of Generalization:

Graph neural networks should generalize to graphs and
signals unseen in the training set.




A Special Form of Generalization Capability

General Form of Generalization:

Graph neural networks should generalize to graphs and
signals unseen in the training set.

The Concept of Transferability:

If two graphs model the same phenomenon, a trained
graph neural network should have approximately the
same repercussion on both graphs.

Some Common Approaches:
=> Metric (Continuum) Space Sampling
= Graphon Approach




_ o MATH
Estimate of Generalization Error )%J

Theorem (Levie, Huang, Bucci, Bronstein, Kutyniok; 2021):

“Generalization error of graph (convolutional) neural network
< Transferability error of graph Laplacian + Consistency error"

Key Ildea:
= Use graph convolutional neural networks with specific spectral filters; this...

« ...solves the instability problem (Levie, Isufi, Kutyniok; 2019)

« ...solves the computational problem for a large class of filters.

= Introduce functional analytic framework akin the Nyquist—Shannon digital signal processing

=> Compare action of graph network on two similar graphs via metric (continuum) space




Further Results on Generalization Ability of GNNs )%J

Graph Convolutional Neural Networks:

=> Similar results on transferability for the graphon setting
(Maskey, Levie, Kutyniok; 2022 & 2024).

=> This builds on (Ruiz, Wang, Ribeiro; 2021).

Message Passing Graph Neural Networks:

=> Non-asymptotic generalization bounds, only depending \ :
on the regularity of the network and space (Maskey, "‘\ o
Levie, Lee, Kutyniok; 2023). /.\

= This builds on (Garg, Jegelka, Jaakkola; 2020), (Verma, \

Zhang; 2019), (Yehudai, Fetaya, Meirom, Chechik, fe/ f
Maron; 2022).
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Towards a Mathematical Foundation for Reliable Al )%J

Expressivity:

= Which aspects of a neural network architecture affect the performance of Al-systems?
Deriving general guidelines of how to choose the network architecture!

Learning:

= Why does stochastic gradient descent converge to good local minima despite the non-convexity of
the problem?
Understanding how to best design the training algorithm!

Generalization:

= Can we derive an understanding of the performance on the test data set? lv
Providing success guarantees and error bounds!

Explainability:

= Why did a trained deep neural network reach a certain decision?
Ensuring trustworthiness and complying with legal requlations! JEERT

Artificial

Intelligence Act
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Explainability:
A Mathematical Approach

MATH



Some General Thoughts about Explainability )%J

Main Goal: We aim to understand decisions of " "black-box" predictors!

= What exactly is relevance in a mathematical sense?

Selected Questions:

= Can we develop a theory for optimal relevance maps?

= Can we derive meaningful higher level explanations?

Vision: |
Questioning the Al as a human about the reason for a decision! Opear's New

ChatGPT




Information Theory: Rate-Distortion Viewpoint

MATH

The Setting:
2 Letd: [0,1]¢ — [0,1] be a neural network.
Alice Part of the Message
Message
O (x) ‘
Monkey*
Original image x Partial image S

Expected Distortion:

Distorted Message
D7)

,Monkey*“

Random completion y

D(S) = D(®,x,5) = E |7 (¢(x) — 2(1))’]

Rate-Distortion Function:

R(e) = min {1S| : D(S) < €}
scl,..d}

Use this viewpoint for the definition of a relevance map!




_ _ _ MATH
Rate-Distortion Explanation (RDE) )%J

Theorem (Waldchen, Macdonald, Hauch, Kutyniok; 2021):
“Solving this problem is NPYY —complete, even computing an approximation is NP —hard.“

Agent Nat
Some Examples: ature

= Planning under uncertainties @

> Finding maximum a-posteriori configurations in Bl Bands Bebavisi

graphical models /

Success Probability

/

= Maximizing utility functions in Bayesian networks

Computable Variant of RDE (Macdonald, Waldchen, Hauch, Kutyniok, 2020):

minimize D(s) + A4 ||s]|; subjectto s € [O,l]dJ

...allows rigorous mathematical performance analysis! lq |

ol



STL-10 Experiment

Sensitivity

SmoothGrad

Guided Backprop

LRP-a-3

‘e

Deep Taylor

MATH

SHAP RDE (diagonal)

LIME RDE (low-rank)
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STL-10 Experiment A
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Going Beyond.... %

Extending to More Realistic Scenarios?

Extension 1 (HeiR, Levie, Resnick, Kutyniok, Bruna; 2020): Tgiﬁyl
AN
= Choose the obfuscations more natural Rangor m g T @E_Ekl

Discriminator

N E

= Example: Apply an inpainting GAN

_ Fake image

Generator -~

Obtaining Higher-Level Explanations?

Extension 2 (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021):
- Apply RDE to decompositions of the data

- Example: Take a wavelet decomposition of an image.

- CartoonX

LUDWIG-
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Idea of CartoonX (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2022) A

Wavelet Compression

Input image x

W

d(z,y)—— < selectl

AN

Reconstruction y

Wavelet Coefficients
W ”

Select ¢
entries

minimize d

largest entries

|

Replace unselected
with zero

——

CartoonX

Input image x

Wavelet Coefficients

minimize d
d(®(x), ®(y))—> < select?
most relevant
entries

|

Replace unselected
with random noise
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Explainability: Understanding Seemingly Wrong Decisions %

Example from Telecommunication:

Estimated RadioMap via RadioUNet Rate-Distortion Explanation
(Levie, Cagkan, Kutyniok, Caire; 2020) (Heil3, Levie, Resnick, Kutyniok, Bruna; 2020):

LUDWIG-
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Explainability: Understanding Wrong Decisions %

Example from Imaging:

Wrong decision by Al: Wrong decision by Al:

Diaper Screw




MATH
Explainability: Understanding Wrong Decisions %

Example from Imaging:

Explanation by CartoonX Explanation by CartoonX
(Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021)

Extension: ShearletX (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023)!




MATH
Mathematical Underpinning: Ensuring Reliability %

Problem:

Cloak Edges in Input CartoonX Edges in CartoonX Pixel RDE Edges in Pixel RDE

Theorem (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023):

Let x € L?[0,1]* be an image modeled as a L?-function. Let m be a bounde
coefficients of x and let y be the image masked in shearlet space with m

ask on the shearlet
m. Then, we have

WF(y) c WF (x)
and masking in shearlet space does not create new edges. >

- — A

LUDWIG-
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Towards a Mathematical Foundation for Reliable Al )%J

Expressivity:

= Which aspects of a neural network architecture affect the performance of Al-systems?
Deriving general guidelines of how to choose the network architecture!

Learning:

= Why does stochastic gradient descent converge to good local minima despite the non-convexity of
the problem?
Understanding how to best design the training algorithm!

Generalization:

= Can we derive an understanding of the performance on the test data set?
Providing success guarantees and error bounds!

Explainability:

= Why did a trained deep neural network reach a certain decision? |
Ensuring trustworthiness and complying with legal requlations! U - Lot

Artificial

Intelligence Act
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A Glimpse into Problems of
Compliance with the EU Al Act

MATH



Challenges in Artificial Intelligence: EU Al Act

Exemplary Requirements from the EU Al Act:

= Article 43: Conformity Assessment

Differential Privacy (Formalization of “Privacy”):

The algorithm A is said to provide =-differential privacy if,
for all datasets Dy and D, that differ on a single element,
and all subsets S of im(.A):

P(A(Dy) € S) .
P(A(D;) € S) ' j

IA

Algorithmic Transparency (Boche, Fono, Kutyniok; 2024):

An algorithmic implementation is fransparent in a given computing model if the realization A, of some function
J : R™ — R"™ by an algorithm A is not altered by its implementation in the computing model. We then say
that / allows for a transparent algorithmic implementation in the given computing model.

H A ,,Formalization* of the legal requirements of the EU Al Act
would allow a fair, low-cost, and automatic verification! ..




Research Project of the Bavarian Al Act Accelerator ’%J
Exemplary Requirements from the EU Al Act: ! ] Bayerisches Staatsministerium ’( \
| fur Digitales i Gt ) )
= Article 43: Conformity Assessment
= Article 50(Transparency YDbligations for Providers and Deployers S “ e
= Article 86: Righlt to Explanation of Individual Decision-Making
Current Dadfier: A Differential Privacy (Formalization of “Privacy”):
The algorithm A is said to provide =-differential privacy if,
= Enormglis costs for small-size companies and start-ups fOfda””datssetS ?1 ?f_‘d (iz)that differ on a single element,
and all subsets 5 of Im :
= Uncgftainty and potential disadvantage in Europe P(A(D) € 5) _
P(A(Dy) € S) = )

Algorithmic Transparency (Boche, Fono, Kutyniok; 2024):

An algorithmic implementation is fransparent in a given computing model if the realization A, of some function
J : R™ — R"™ by an algorithm A is not altered by its implementation in the computing model. We then say
that / allows for a transparent algorithmic implementation in the given computing model.

H A ,,Formalization* of the legal requirements of the EU Al Act
would allow a fair, low-cost, and automatic verification!




MATH
EU Al Act: The Role of the Computing Platform )%J

Theorem (Boche, Fono, Kutyniok; 2024):

There exists an algorithm A with transparent implementation in the Turing model realizing A
if and only if f: R™ — R™ is Borel-Turing computable.

Theorem (Boche, Fono, Kutyniok; 2024):

There exists an algorithm A with transparent implementation in the analog (Blum-Shub-
Smale) model realizing A if and only if f : R™ — R™ is analog (BSS) computable.

Digital hardware can also cause problems of
compliance with the EU Al Act!




MATH
Towards a Mathematical Foundation for Reliable Al )%J
Expressivity:

= Which aspects of a neural network architecture affect the performance of Al-systems?
Deriving general guidelines of how to choose the network architecture!

Learning:

= Why does stochastic gradient descent converge to good local minima despite the non-convexity of
the problem?
Understanding how to best design the training algorithm!

Generalization:

= Can we derive an understanding of the performance on the test data set?
Providing success guarantees and error bounds!

Explainability:

= Why did a trained deep neural network reach a certain decision?

*
EU * x ¥

Ensuring trustworthiness and complying with legal regulations ! Artfcial

Intelligence Act

A ...toward the core of the reliability and sustainability problem! J




Computing in the 21th Century

Importance of Computing:

< Digital Transformation ===  Ubiquitous Computing

¢ (Generative) Al === | arge-Scale Computing

% Virtual Reality === Fast Computing

< Information and Communication Technology (ICT) === Djstributed Computing

Computing is the heart of modern technology,
powering innovation, transforming industries,

and shaping the future of our society!

o

v,
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Reliable and Sustainable Al:
The Need to Rethink Current Computing!

MATH
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Are There Fundamental Limitations to Be Aware Of? ’%J
...Delving Deeper! s ——
/ \ mﬂ‘e/ Féé-A/write heac\j
.. N — N —_—
What can actually be computed on digital hardware? J wlolafofa]aafo]..
infinite t \\I/ finit ‘Ifhbt

Turing-Machine

A computable problem (function) is one for which the input-output relation
can be computed on a digital machine for any given accuracy.

What about Non-Computability?

Non-computable problems can be tackled successfully in
practice, if limited precision succeeds!

;? But we have no guarantees of correctness, hence no reliability!




Very Disappointing News

Theorem (Boche, Fono, Kutyniok; 2023):
The solution of a finite-dimensional inverse problem is not
(Turing-)computable (by a deep neural network).

Solution Set: For A € C™N and y € C™ et

W(A,y) := argmin ||x||; such that [|Ax — y||, < €.

x € CN

Theorem (Boche, Fono, Kutyniok; 2023):

Fix parameters € € (0, i) ,N = 2,and m < N. There does not exist a (Turing-)

computable function P : C"™*N x ¢™ — CV such that

o Wy -PU ), <2,
(4,y) € C™N x c™

/




MATH

More Problems with Digital Hardware

Theorem (Boche, Fono, Kutyniok; 2023):
Many classification problems are also not

Theorem (Boche, Fono, Kutyniok; 2023):
(Turing) computable!

The Pseudo Inverse is not (Banach-Mazur)

?, computable!
\S
@

Theorem (Bacho, Boche, Kutyniok; 2024):

Computing the solutions to the Laplace and the Theorem (Lee, Boche, Kutyniok; 2024):
diffusion equation on digital hardware causes a Finding the solution of most optimization problems
complexity blowup. is not (Turing-)computable; it can not even be

approximated by a Turing computable function!




MATH
What now? N
Theory tells us... )%
@;y@
The solution of a finite-dimensional inverse problem is computable (by a " :l\

Theorem (Boche, Fono, Kutyniok; 2024):
deep neural network) on an analog (Blum-Shub-Smale) machine! J

Reliability for certain problem settings requires novel hardware!

Exciting Future Developments:

—@romorphic computing
= Biocomputing \
= Quantum computing

Highly energy efficient! J

=——— EcolLogic Computing

https://www.ecologic-computing.com J

Reliable and Sustainable Al...by Next Generation Al Computing! .
LMU }::
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Next Generation Al Computing

MATH
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Neuromorphic Hardware ’%

Von Neumann architecture

01011001 0110001
Binary Binary
Input Output

Features of Neuromorphic Hardware:
=> Closer to the human brain.

= Energy efficiency.

- Execution speed.

-> Robustness.

2 ...

What is the correct type of neural network? J .
LMUJ:




MATH

The Framework of Spiking Neural Networks ’%J
Computation graph associated with a spiking neural network Spike dynamics of neuron n;

Spike emission to

neurons n, and n

Other : 1 °

€| Threshold

‘ Spike Spike =
. 0og o
p encoding decoding g
5
Cat %

111 Tme

Input spikes from neurons n, and n,

Remarks:

=> More biologically realistic than first and second generation artificial neurons.

= Information is encoded in the timing of individual spikes.

=> Numerous models for spiking neurons exist; one of those is the Spike Response Model.

Time is one crucial factor in this model!J .
LMU{:




o MATH
Our Focus: Expressivity A

How expressive are spiking neural networks compared to classical networks?J

' 4 \

Function approximation: | Number of linear regions:
How well do the realizations of a neural How does the network partition the input
network approximate a target function? space, affecting decision boundaries?

W, | W,

1 ts Partitioni
Approximation of Target Function ce arttionng

A === Target Function
0.8 o
\ == = NN Realization

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

XXXXXX

Generalization: Neuman, Dold, Petersen; 2024




: MATH
The Spike Response Model (SRM) ’%J

Definition: A SRM (spiking neural) network ® is a directed graph (V, E) and
consists of a finite set I/ of spiking neurons, a subset V;;, © V of input neurons, =~ =

and aset E c V X V of synapses. Each synapse (u,v) € E is associated with ) ~_
> a synaptic weight wy, = 0, @% \@

> a synaptic delay d,,, = 0,
= and a response function €, : R - R.
Each neuronv € V \ V,, is associated with
> a firing threshold 8, > 0,

-> and a membrane potential B, : R - R, Pt

which is given by T

— f T I d I \\\\“‘*-.
Pv(t) — S . S ) Wyv €up (t - tu) o o o+ o s+ o Tl

(u,v)EE t{: €F,,

with , = {t{i: 1 < f < nfor some n € N} being the set of firing times of neuron
u,i.e., times t whenever P,(t) reaches 6,,.




MATH
Spike Response Model Networks: Function Approximation ’%J

Theorem (Singh, Fono, Kutyniok; 2024):

LetL,d € N, [a, b]¢ € R, and let ¥ be a classical ReLU-neural network of depth
L and width d. Then there exists a SRM network ® with N(®) = N(¥) + L(2d +
3) — (2d + 2) and L(®) = 3L — 2 that realizes the output of ¥ on [a, b]¢.

»

Theorem (Singh, Fono, Kutyniok; 2024):

Ford > 2, ¢ :=|log,(d + 1)] + 1. For ® being a 1-layer SRM network with one
output neuron v and d input neurons uy, ... ug with wy, ,, € Ry, fori € {1, ..., d}. Then

(1) te can be realized by a classical ReLU-neural network ¥ with L(*V) = £ and
N(CD) € O(t . 22d>+3d +d).

(2) tg can be realized by a classical ReLU-neural network W with L(W) € 0(d) and
N(®) € 0(84).




MATH
SRM Networks: Approximation of the Minimum Function %

Theorem (Singh, Fono, Kutyniok; 2024):
For d > 2, there exists a single layer SRM network &, with linear response function, with
one output neuron v and d input neurons, such that

_ (d—1)6
|D(xy, ..., Xxg) — min{xy, ..., x 3} < >dw forall x, ...,xg € R,
where 6 > 0 is the threshold of v and w > 0 is the weight of each connection. /

Comparison with ReLU-neural networks:

= For any classical ReLU-neural network, irrespective of depth, to approximate min, each
hidden layer must have at least & neurons.

= Under certain assumption on the weights and data distribution, a classical ReLU-neural
network of depth 3 is necessary to efficiently approximate min.

Spiking neural networks are strictly more expressive!




MATH
SRM Networks: Linear Regions )%J

Theorem (Singh, Fono, Kutyniok; 2024):
Let @ be a one-layer SRM network with linear response, with input dimension d and a
single output neuron. Then the maximum number of linear regions |R| satisfies the fight

upper bound

<24 -1
|R| < Y

Some Remarks:
=2 In comparison, one ReLU neuron divides the space only into two regions, regardless of d.

= A single spiking neuron divides the input space with the same number of linear
regions as a classical two-layer neural network with d hidden neurons.

Spiking neural networks are strictly more expressive!

LUDWIG-
I—Mu !
MO
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Vision of our Project /////gAln Nt Bl

=, 7 )
v 3
J, |
=

Comprehensive theory-driven framework

G. Kutyniok - H. Boche for next generation (Green) Al-systems:
h m Optimally application-adapted hard-software combinations

E m for maximal energy-efficiency and reliability!

S. Speidel F. Fitzek

TECHMNISCHE
@ UNIVERSITAT
DRESDEN

Next generation

robotics with reliable robot brains
and life-long learning capabilities!

Provably reliable

e s e ¢

Al-based communication systems Low cost, trust-

which compIy with the EU Al Act! worthy medical Al-devices
for diagnosis and therapy!

] ({ STAATSMINISTERIUM
= ) FUR WISSENSCHAFT
KULTUR UND TOURISMUS

Bayerisches Staatsministerium flr ‘g Bt
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Conclusions

Taking a Mathematical Perspective:
> Analysis of Expressivity, Training, Generalization

=2 Explainability: Rate-Distortion Explanation / CartoonX

Fundamental Problem with Digital Hardware!

Next Generation Al Computing:

= Analog hardware such as neuromorphic computing!

= Analog Al systems such as spiking neural networks!
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Thank you very much
for your attention!
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