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Fourth Industrial Revolution by Artificial Intelligence 

Radical Change of our Society in its Full Breadth!



Challenges in Artificial Intelligence: Reliability

Example: 

Accidents involving robots

Problems with Safety

!
Example: 

Risks of hacking into AI systems

Problems with Security

Example: 

Black-box and biased decisions

Problems with Responsibility

Current major problem 
worldwide:

Lack of reliability of 
AI technology!

Example: 

Privacy violations of health data

Problems with Privacy

Deep understanding from a 

mathematical perspective!



Challenges in Artificial Intelligence: Sustainability / Energy Efficiency

Source: Twitter/X, Sept. 2024



Source: Decadal Plan of the Semiconductor Research Corporation for the Biden (US) Administration, 2021
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Novel 

Mathematical 

Method!

Challenges in Artificial Intelligence: Sustainability / Energy Efficiency



Taking a Mathematical Perspective



A deep neural network is a function Φ: ℝ𝑑 → ℝ𝑁𝐿 of the form

Φ 𝑥 = 𝑇𝐿𝜌(𝑇𝐿−1 𝜌 … 𝜌 𝑇1 𝑥 … ), 𝑥 ∈ ℝ𝑑 ,
with

 𝑇𝑙:  ℝ𝑁𝑙−1 →  ℝ𝑁𝑙 , 𝑙 = 1, … , 𝐿, where  𝑇𝑙 𝑥 = 𝑊(𝑙) 𝑥 + 𝑏(𝑙).

Deep Neural Networks

Key Goal of McCulloch and Pitts (1943):

Introduce artificial Intelligence!

Artificial Neurons:

Definition of a Neural Network:

𝑓 𝑥1, … , 𝑥𝑛 =  𝜌 ෍

𝑖=1

𝑛

𝑥𝑖𝑤𝑖 − 𝑏 



Workflow of Applying Deep Neural Networks

Starting Point :

Samples 𝑥𝑖 , 𝑓 𝑥𝑖 𝑖=1

𝑛
of a function 𝑓 ∶  ℳ → {1,2, … 𝐾}. 

Split into training- and test data set.

Selection of Architecture:

Choose the number of layers, the number of neurons in each layer, 

etc. 

Training:

Learn the affine-linear functions 𝑇𝑙 𝑥 = 𝑊(𝑙)𝑥 + 𝑏(𝑙), 𝑙 = 1, … , 𝐿 via 

min ෍

𝑖=1

𝑚

ℒ(Φ 𝑊 𝑙 ,𝑏 𝑙
𝑙

𝑥𝑖 , 𝑓 𝑥𝑖 ) 
𝑊 𝑙 , 𝑏 𝑙

l
 

Φ 𝑊 𝑙 ,𝑏 𝑙
𝑙

𝑥𝑖 ≈ 𝑓 𝑥𝑖

Performance Check:

For the test data set:       



Towards a Mathematical Foundation for Reliable AI

Expressivity:

Which aspects of a neural network architecture affect the performance of AI-systems?

Learning:

Why does stochastic gradient descent converge to good local minima despite the non-convexity of 

the problem?

Generalization:

Can we derive an understanding of the performance on the test data set?

Explainability:

Why did a trained deep neural network reach a certain decision?

Deriving general guidelines of how to choose the network architecture!

Understanding how to best design the training algorithm!

Providing success guarantees and error bounds!

Ensuring trustworthiness and complying with legal regulations!



 A Glimpse into Generalization: 

Mathematical Success Guarantees



Graph Neural Networks

Graph neural networks generalize classical neural networks to signals over graph domains.

Graph signal:

Exemplary Applications:



A Special Form of Generalization Capability

General Form of Generalization:

Graph neural networks should generalize to graphs and 

signals unseen in the training set.



A Special Form of Generalization Capability

General Form of Generalization:

Graph neural networks should generalize to graphs and 

signals unseen in the training set.

The Concept of Transferability:

If two graphs model the same phenomenon, a trained 

graph neural network should have approximately the 

same repercussion on both graphs.

Some Common Approaches:

Metric (Continuum) Space Sampling

Graphon Approach



Estimate of Generalization Error

Key Idea:

Use graph convolutional neural networks with specific spectral filters; this…

Introduce functional analytic framework akin the Nyquist—Shannon digital signal processing

Compare action of graph network on two similar graphs via metric (continuum) space

• ...solves the instability problem (Levie, Isufi, Kutyniok; 2019)

• ...solves the computational problem for a large class of filters.

Theorem (Levie,  Huang, Bucci, Bronstein, Kutyniok; 2021):

“Generalization error of graph (convolutional) neural network

 ≤ Transferability error of graph Laplacian + Consistency error''



Further Results on Generalization Ability of GNNs

Graph Convolutional Neural Networks:

Similar results on transferability for the graphon setting 

(Maskey, Levie, Kutyniok; 2022 & 2024).

This builds on (Ruiz, Wang, Ribeiro; 2021).

Message Passing Graph Neural Networks:

Non-asymptotic generalization bounds, only depending 

on the regularity of the network and space (Maskey, 

Levie, Lee, Kutyniok; 2023).

This builds on (Garg, Jegelka, Jaakkola; 2020), (Verma, 

Zhang; 2019), (Yehudai, Fetaya, Meirom, Chechik, 

Maron; 2022).



Towards a Mathematical Foundation for Reliable AI

Expressivity:

Which aspects of a neural network architecture affect the performance of AI-systems?

Learning:

Why does stochastic gradient descent converge to good local minima despite the non-convexity of 

the problem?

Generalization:

Can we derive an understanding of the performance on the test data set?

Explainability:

Why did a trained deep neural network reach a certain decision?

Deriving general guidelines of how to choose the network architecture!

Understanding how to best design the training algorithm!

Providing success guarantees and error bounds!

Ensuring trustworthiness and complying with legal regulations!



Explainability: 

A Mathematical Approach



Some General Thoughts about Explainability

Main Goal: We aim to understand decisions of ``black-box'' predictors!

Selected Questions:

What exactly is relevance in a mathematical sense?

Can we develop a theory for optimal relevance maps?

Can we derive meaningful higher level explanations?

Vision:

Questioning the AI as a human about the reason for a decision!

Source: Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller; 2019)

The explainability approach itself needs to be reliable!



 Let Φ ∶ 0,1 𝑑 → 0,1  be a neural network.

Information Theory: Rate-Distortion Viewpoint

The Setting: 

Alice                                                     Bob 

Φ 𝑥 = 0.97

„Monkey“

Φ 𝑦 = 0.91

„Monkey“

Original image 𝑥 Partial image 𝑆 Random completion 𝑦

Expected Distortion: 

                    𝐷 𝑆 = 𝐷 Φ, 𝑥, 𝑆 = 𝔼
1

2
Φ 𝑥 − Φ 𝑦

2

Rate-Distortion Function: 

𝑅 𝜖 = min { 𝑆  ∶  𝐷 𝑆 ≤ 𝜖}
𝑆 ⊆ {1, … , 𝑑}

Use this viewpoint for the definition of a relevance map!

Part of the Message

Message Distorted Message
Message Distorted Message



Rate-Distortion Explanation (RDE)

…allows rigorous mathematical performance analysis!

Theorem (Wäldchen, Macdonald, Hauch, Kutyniok; 2021):

“Solving this problem is 𝑁𝑃𝑃𝑃 −complete, even computing an approximation is 𝑁𝑃 −hard.“ 

Some Examples:

Planning under uncertainties

Finding maximum a-posteriori configurations in 

graphical models

Maximizing utility functions in Bayesian networks

Computable Variant of RDE  (Macdonald, Wäldchen, Hauch, Kutyniok, 2020):

minimize  𝐷 𝑠 + 𝜆 ԡ ԡ𝑠 1    subject to     𝑠 ∈ 0,1 𝑑 



STL-10 Experiment



STL-10 Experiment



Going Beyond….

Extension 1 (Heiß, Levie, Resnick, Kutyniok, Bruna; 2020):

Choose the obfuscations more natural

Example: Apply an inpainting GAN

Extension 2 (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021):

Apply RDE to decompositions of the data

Example: Take a wavelet decomposition of an image.

CartoonX

Extending to More Realistic Scenarios?

Obtaining Higher-Level Explanations?



Idea of CartoonX (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2022)



Explainability: Understanding Seemingly Wrong Decisions

Example from Telecommunication:

Estimated RadioMap via RadioUNet 

(Levie, Cagkan, Kutyniok, Caire; 2020)

Rate-Distortion Explanation 

(Heiß, Levie, Resnick, Kutyniok, Bruna; 2020):



Explainability: Understanding Wrong Decisions

Example from Imaging:

Wrong decision by AI:

Diaper

Wrong decision by AI:

Screw



Explainability: Understanding Wrong Decisions

Explanation by CartoonX

(Kolek, Nguyen, Levie, Bruna, Kutyniok; 2021)

Explanation by CartoonX

Example from Imaging:

Extension: ShearletX (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023)!



Mathematical Underpinning: Ensuring Reliability 

Problem:

Theorem (Kolek, Windesheim, Loarca, Kutyniok, Levie; 2023): 

Let 𝑥 ∈ 𝐿2 0,1 2 be an image modeled as a 𝐿2-function. Let 𝑚 be a bounded mask on the shearlet 
coefficients of 𝑥 and let y be the image masked in shearlet space with mask 𝑚. Then, we have  

𝑊𝐹 𝑦 ⊂ 𝑊𝐹 (𝑥)

and thus masking in shearlet space does not create new edges. 



Towards a Mathematical Foundation for Reliable AI

Expressivity:

Which aspects of a neural network architecture affect the performance of AI-systems?

Learning:

Why does stochastic gradient descent converge to good local minima despite the non-convexity of 

the problem?

Generalization:

Can we derive an understanding of the performance on the test data set?

Explainability:

Why did a trained deep neural network reach a certain decision?

Deriving general guidelines of how to choose the network architecture!

Understanding how to best design the training algorithm!

Providing success guarantees and error bounds!

Ensuring trustworthiness and complying with legal regulations!



A Glimpse into Problems of

Compliance with the EU AI Act



Challenges in Artificial Intelligence: EU AI Act

Exemplary Requirements from the EU AI Act:

Article 43: Conformity Assessment

Article 50: Transparency Obligations for Providers and Deployers

Article 86: Right to Explanation of Individual Decision-Making

Current Danger:

Enormous costs for small-size companies and start-ups. 

Uncertainty and potential disadvantage in Europe

! Differential Privacy (Formalization of “Privacy”):

Algorithmic Transparency (Boche, Fono, Kutyniok; 2024):

An algorithmic implementation is transparent in a given computing model if the realization        of some function

by an algorithm       is not altered by its implementation in the computing model. We then say 

that     allows for a transparent algorithmic implementation in the given computing model.

A „Formalization“ of the legal requirements of the EU AI Act 
would allow a fair, low-cost, and automatic verification! 



Research Project of the Bavarian AI Act Accelerator
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EU AI Act: The Role of the Computing Platform

Theorem (Boche, Fono, Kutyniok; 2024):              

There exists an algorithm 𝒜 with transparent implementation in the Turing model realizing 𝒜𝑓

if and only if  𝑓 ∶ ℝ𝑚 → ℝ𝑛 is Borel-Turing computable.

Theorem (Boche, Fono, Kutyniok; 2024):              

There exists an algorithm 𝒜 with transparent implementation in the analog (Blum-Shub-

Smale) model realizing 𝒜𝑓  if and only if 𝑓 ∶ ℝ𝑚 → ℝ𝑛 is analog (BSS) computable.

Digital hardware can also cause problems of 

compliance with the EU AI Act!



Towards a Mathematical Foundation for Reliable AI

Expressivity:

Which aspects of a neural network architecture affect the performance of AI-systems?

Learning:

Why does stochastic gradient descent converge to good local minima despite the non-convexity of 

the problem?

Generalization:

Can we derive an understanding of the performance on the test data set?

Explainability:

Why did a trained deep neural network reach a certain decision?

Deriving general guidelines of how to choose the network architecture!

Understanding how to best design the training algorithm!

Providing success guarantees and error bounds!

Ensuring trustworthiness and complying with legal regulations !

…toward the core of the reliability and sustainability problem! !



Computing in the 21th Century

Importance of Computing:

❖ Digital Transformation

❖ (Generative) AI

❖ Virtual Reality

❖ Information and Communication Technology (ICT)

Ubiquitous Computing

Large-Scale Computing

Fast Computing

Distributed Computing

Computing is the heart of modern technology, 

powering innovation, transforming industries, 

and shaping the future of our society! 



Reliable and Sustainable AI: 

The Need to Rethink Current Computing!



Are There Fundamental Limitations to Be Aware Of?

What can actually be computed on digital hardware?

…Delving Deeper!

A computable problem (function) is one for which the input-output relation 

can be computed on a digital machine for any given accuracy.

Non-computable problems can be tackled successfully in 
practice, if limited precision succeeds!

But we have no guarantees of correctness, hence no reliability!

What about Non-Computability?

Turing-Machine



Theorem (Boche, Fono, Kutyniok; 2023):

Fix parameters 𝜖 ∈ 0,
1

4
, 𝑁 ≥ 2, and 𝑚 < 𝑁. There does not exist a (Turing-)  

computable function ෡Ψ ∶ ℂ𝑚×N × ℂ𝑚 → ℂ𝑁  such that

sup Ψ 𝐴, 𝑦 − ෡Ψ(𝐴, 𝑦)
2

<
1

4
. 

Very Disappointing News

Theorem (Boche, Fono, Kutyniok; 2023):

The solution of a finite-dimensional inverse problem is not 

(Turing-)computable (by a deep neural network).

Solution Set: For 𝐴 ∈ ℂ𝑚×N and 𝑦 ∈ ℂ𝑚 let

Ψ 𝐴, 𝑦 ≔ arg min 𝑥 1 such that 𝐴𝑥 − 𝑦 2 ≤ 𝜖. 
𝑥 ∈ ℂ𝑁  

𝐴, 𝑦 ∈ ℂ𝑚×N × ℂ𝑚



More Problems with Digital Hardware

Theorem (Boche, Fono, Kutyniok; 2023):              
The Pseudo Inverse is not (Banach-Mazur) 

computable! 

Theorem (Bacho, Boche, Kutyniok; 2024):                                                                           
Computing the solutions to the Laplace and the 
diffusion equation on digital hardware causes a 

complexity blowup.

Theorem (Lee, Boche, Kutyniok; 2024):                                                 
Finding the solution of most optimization problems 

is not (Turing-)computable; it can not even be 

approximated by a Turing computable function!

Theorem (Boche, Fono, Kutyniok; 2023):              
Many classification problems are also not 

(Turing) computable! 



Exciting Future Developments:

Neuromorphic computing

Biocomputing

Quantum computing

What now?

Theorem (Boche, Fono, Kutyniok; 2024):

The solution of a finite-dimensional inverse problem is computable (by a 

deep neural network) on an analog (Blum-Shub-Smale) machine!

Theory tells us…

Reliability for certain problem settings requires novel hardware!

Highly energy efficient!

Reliable and Sustainable AI...by Next Generation AI Computing!

https://www.ecologic-computing.com



Next Generation AI Computing



Neuromorphic Hardware

Features of Neuromorphic Hardware:

Closer to the human brain.

Energy efficiency.

Execution speed.

Robustness.

….

What is the correct type of neural network?



Remarks:

More biologically realistic than first and second generation artificial neurons.

Information is encoded in the timing of individual spikes.

Numerous models for spiking neurons exist; one of those is the Spike Response Model.

Time is one crucial factor in this model!

The Framework of Spiking Neural Networks



Our Focus: Expressivity

How expressive are spiking neural networks compared to classical networks?

Function approximation: 

How well do the realizations of a neural

network approximate a target function?

Number of linear regions: 

How does the network partition the input 

space, affecting decision boundaries?

Generalization: Neuman, Dold, Petersen; 2024 



The Spike Response Model (SRM) 

Definition: A SRM (spiking neural) network Φ is a directed graph 𝑉, 𝐸 and 
consists of a finite set 𝑉 of spiking neurons, a subset 𝑉𝑖𝑛 ⊂ 𝑉 of input neurons, 
and a set 𝐸 ⊂ 𝑉 × 𝑉 of synapses. Each synapse 𝑢, 𝑣 ∈ 𝐸 is associated with

a synaptic weight 𝑤𝑢𝑣 ≥ 0,

a synaptic delay 𝑑𝑢𝑣 ≥ 0, 

and a response function 𝜖𝑢𝑣 ∶  ℝ → ℝ.

Each neuron 𝑣 ∈ 𝑉 ∖  𝑉𝑖𝑛 is associated with  

a firing threshold 𝜃𝑣 >  0,

and a membrane potential 𝑃𝑣 ∶  ℝ → ℝ, 

which is given by

𝑃𝑣 𝑡 =  ෍

𝑢,𝑣 ∈𝐸

෍

𝑡𝑢
𝑓

∈𝐹𝑢

𝑤𝑢𝑣𝜖𝑢𝑣(𝑡 − 𝑡𝑢
𝑓

)

with 𝐹𝑢 = {𝑡𝑢
𝑓

: 1 ≤ 𝑓 ≤ 𝑛 for some 𝑛 ∈ ℕ} being the set of firing times of neuron 

𝑢 , i.e., times 𝑡 whenever 𝑃𝑢 𝑡  reaches 𝜃𝑢.



Spike Response Model Networks: Function Approximation

Theorem (Singh, Fono, Kutyniok; 2024):

Let 𝐿, 𝑑 ∈ ℕ, 𝑎, 𝑏 𝑑 ⊆ ℝ, and let Ψ be a classical ReLU-neural network of depth 
𝐿 and width 𝑑. Then there exists a SRM network Φ with 𝑁 Φ = 𝑁 Ψ + 𝐿(

)
2𝑑 +

3 − 2𝑑 + 2  and 𝐿 Φ = 3𝐿 − 2 that realizes the output of Ψ on 𝑎, 𝑏 𝑑.

Theorem (Singh, Fono, Kutyniok; 2024):

For 𝑑 ≥ 2, ℓ ≔ log2 𝑑 + 1 + 1. For Φ being a 1-layer SRM network with one 
output neuron 𝑣 and 𝑑 input neurons 𝑢1, … 𝑢𝑑  with 𝑤𝑢𝑖𝑣 ∈ ℝ>0 for 𝑖 ∈ {1, … , 𝑑}. Then

(1)  𝑡Φ can be realized by a classical ReLU-neural network Ψ with 𝐿 Ψ = ℓ and 
𝑁 Φ ∈ 𝑂 𝑡 ⋅ 22𝑑3+3𝑑2+𝑑 .

(2) 𝑡Φ can be realized by a classical ReLU-neural network Ψ with 𝐿 Ψ ∈ 𝑂(𝑑) and 
𝑁 Φ ∈ 𝑂 8𝑑 .



Theorem (Singh, Fono, Kutyniok; 2024):

For 𝑑 ≥ 2, there exists a single layer SRM network Φ, with linear response function, with 

one output neuron 𝑣 and 𝑑 input neurons, such that

Φ 𝑥1, … , 𝑥𝑑 − min{𝑥1, … , 𝑥𝑑} ≤
𝑑 − 1 𝜃

2𝑑𝑤
,

where 𝜃 > 0 is the threshold of 𝑣 and 𝑤 > 0 is the weight of each connection.

SRM Networks: Approximation of the Minimum Function

for all 𝑥1, … , 𝑥𝑑 ∈ ℝ,

Comparison with ReLU-neural networks:

For any classical ReLU-neural network, irrespective of depth, to approximate min, each 
hidden layer must have at least 𝑑 neurons. 

Under certain assumption on the weights and data distribution, a classical ReLU-neural 
network of depth 3 is necessary to efficiently approximate min.

Spiking neural networks are strictly more expressive!



SRM Networks: Linear Regions

Theorem (Singh, Fono, Kutyniok; 2024):

Let Φ be a one-layer SRM network with linear response, with input dimension 𝑑 and a 

single output neuron. Then the maximum number of linear regions |ℜ| satisfies the tight

upper bound

ℜ ≤ 2𝑑 − 1

Some Remarks:

In comparison, one ReLU neuron divides the space only into two regions, regardless of 𝑑.

A single spiking neuron divides the input space with the same number of linear         
regions as a classical two-layer neural network with 𝑑 hidden neurons. 

Spiking neural networks are strictly more expressive!



Vision of our Project

Comprehensive theory-driven framework 

for next generation (Green) AI-systems: 

Optimally application-adapted hard-software combinations 

for maximal energy-efficiency and reliability!   

Provably reliable 

AI-based communication systems

which comply with the EU AI Act!

Low cost, trust-

worthy medical AI-devices 

for diagnosis and therapy! 

Next generation 

robotics with reliable robot brains

and life-long learning capabilities! 

G. Kutyniok      H. Boche

S. Speidel       F. Fitzek

Bavaria Saxony
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Conclusions



Conclusions

Current Problems with Reliability and Sustainability of AI!

Taking a Mathematical Perspective:

Analysis of Expressivity, Training, Generalization 

Explainability: Rate-Distortion Explanation / CartoonX

Fundamental Problem with Digital Hardware!

Next Generation AI Computing:

Analog hardware such as neuromorphic computing!

Analog AI systems such as spiking neural networks! 

Vision: Mathematically Reliable and Sustainable AI!



Konrad Zuse School of Excellence in Reliable AI 

(https://zuseschoolrelai.de)

Munich, Germany 

Mission: Train future generations of AI experts in 
Germany who combine technical brilliance with 
awareness of the importance of AI’s reliability



Thank you very much

for your attention!
References available at:

       www.ai.math.lmu.de/kutyniok

Survey Papers:

Berner, Grohs, Kutyniok, Petersen, The Modern Mathematics of Deep Learning, 2021
Fono, Singh, Araya, Petersen, Boche, Kutyniok, Sustainable AI: Mathematical Foundations of Spiking Neural Networks, 2025

Related Book:

      Grohs and Kutyniok, eds., Mathematical Aspects of Deep Learning, Cambridge University Press, 2022.


