

Unleashing Creativity Using AI Agent Networks

Mihaela van der Schaar, FRS

John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine, University of Cambridge
Director, Cambridge Center for AI in Medicine

van_der_Schaar
\LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

mv472@cam.ac.uk

@MihaelaVDS

[linkedin.com/in/
mihaela-van-der-schaar/](https://linkedin.com/in/mihaela-van-der-schaar/)

Meet our group!

<https://www.vanderschaar-lab.com/>
→ Research Team

= joined us in 2025

Anita Kriz

Antonin Berthon

Benjamin Lapostolle

Claudio Fanconi

Harry Amad

Julianna Piskorz

Kasia Kobalczyk

Krzysztof Kacprzyk

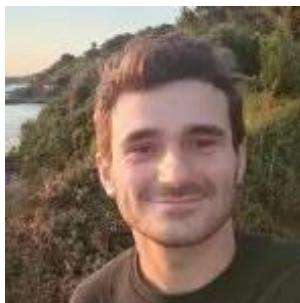
Luca Muscarnera

Max Ruiz Luyten

Nicolás Astorga

Nicholas Huyn

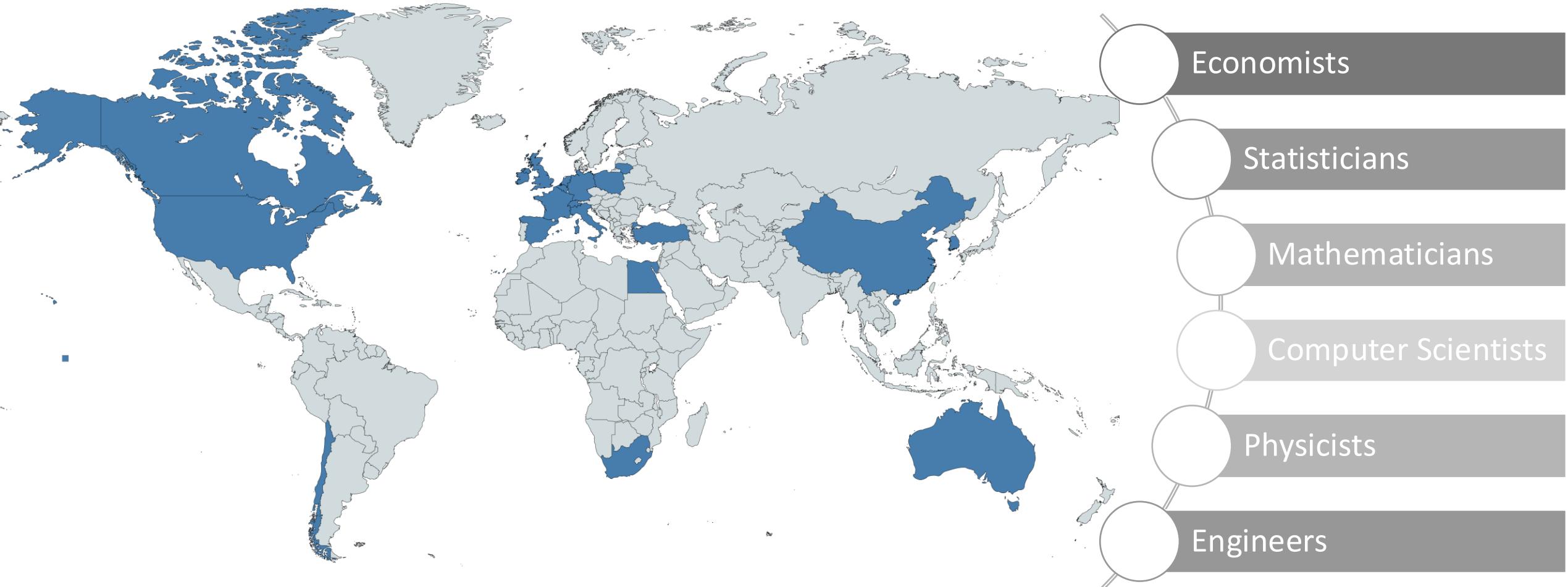
Paulius Rauba


Qiyao Wei

Tennison Liu

Thomas Pouplin

Victor Baillet


van_der_Schaar
LAB

[vanderschaar-lab.com](https://www.vanderschaar-lab.com)

UNIVERSITY OF
CAMBRIDGE

Our lab – diverse and international

From over 20+ countries, from diverse academic backgrounds

A fundamentally new paradigm is needed for AI to orient it towards addressing the complexities of the real-world

van_der_Schaar
\ LAB

vanderschaar-lab.com

What is Reality-centric AI?

- AI which aims to **solve real-world problems**
- AI which operates effectively and accountably given the inherent and unavoidable **complexities of the real world**
- AI which **empowers, and does not marginalize humans**

Our focus

Identify big and bold problems we want to solve – societal, healthcare, education, finance, economics, biology etc.

Define and formalize the identified problems

Invent cutting-edge ML solutions to solve them

But there is a gap....because most of these problems are complex & not tractable

This also requires out-of-the-box thinking, modeling and new ML to close the gap

Fearless thinking

We are interested to **envision** a better world and then develop **new ways of thinking** and new **ML** to **conceive it**

A huge challenge!
Brain-hurting difficult!
Exciting!
Intellectual adrenaline ☺
A sense of achievement

Different types of research labs

Most ML/AI Research Labs

- Work on well-formalized problems, well-known benchmarks
- Focus on the same problem for many years
- Build on established work
- Use similar methods repeatedly
- All work in the same sub-area of ML
- Create excitement through the development of new algorithmic possibilities

Our way

- Focus on transformation in the real-world, create new ways of thinking, newly defined problems
- Formalize new, unique challenges
- Different problems require diverse methods and new strands of ML
- Explore multiple areas of ML, beyond a single sub-area
- Create excitement through groundbreaking possibilities

ML topics

AI Agents: Creativity, Reasoning, Safety, Collaboration, Labor Markets

AI for Scientific Discovery

Synthetic data, simulators and generative models

Digital Twins

Decision making under uncertainty

Next-generation RL

Causal Inference

Time series

AI-human alignment, AI for human empowerment

AI for complex systems, organizations

Autoformalism

AI for Operations Research

AI for Education

Etc.

van der Schaar lab @ NeurIPS, ICML, ICLR 2025

32 papers published in 2025 at the best AI/ML conferences

<https://www.vanderschaar-lab.com/>
→ Publications

ICLR 2025

van der Schaar lab @ ICLR 2025

Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples
Y. Li, M. R. Luyten, M. van der Schaar

Going Beyond Static: Understanding Shifts in Feature Attribution
M. van der Schaar

No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs
K. Kacprzyk, M. van der Schaar

Active Task Disambiguation with LLMs
K. Kobalczyk, N. Astorga, T. Liu, M. van der Schaar

ICML 2025

van der Schaar lab @ ICML 2025

Truly Self-Improving Agents Require Intrinsic Metacognitive Learning
T. Liu, M. van der Schaar

Not All Explanations for Deep Learning Phenomena Are Equally Valuable
A. Jeffares, M. van der Schaar

All Current Generative Fidelity and Diversity Metrics are Flawed
O. Räisä, B. van Breugel, M. van der Schaar

Statistical Hypothesis Testing for Auditing Robustness in Language Models
P. Rauba, Q. Wei, M. van der Schaar

Strategic Planning: A Top-Down Approach to Option Generation
M. R. Luyten, A. Berthon, M. van der Schaar

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching
N. Seedat, M. van der Schaar

Continuously Updating Digital Twins using Large Language Models
H. Amad, N. Astorga, M. van der Schaar

Unified Screening for Multiple Diseases
Y. Narter, A. Hüyük, M. van der Schaar, C. Tekin

Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data
K. Kacprzyk, J. Piskorz, M. van der Schaar

Preference Learning for AI Alignment: a Causal Perspective
K. Kobalczyk, M. van der Schaar

AutoCATE: End-to-End, Automated Treatment Effect Estimation
T. Vanderschueren, T. Verdonck, M. van der Schaar, W. Verbeke

Stochastic Encodings for Active Feature Acquisition
A. Norcliffe, C. Lee, F. Imrie, M. van der Schaar, P. Lió

Autoformulation of Mathematical Optimization Models Using LLMs
N. Astorga, T. Liu, Y. Xiao, M. van der Schaar

G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration
S. Holt, M. R. Luyten, A. Berthon, M. van der Schaar

The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data
T. Pouplin, K. Kobalczyk, H. Sun, M. van der Schaar

NeurIPS 2025

van der Schaar lab @ NeurIPS 2025

Improving the Generation and Evaluation of Synthetic Data for Downstream Medical Causal Inference
Harry Amad*, Zhaozhi Qian, Dennis Frauen, Julianna Piskorz, Stefan Feuerriegel, Mihaela van der Schaar

Towards a Cascaded LLM Framework for Cost-effective Human-AI Decision-Making
Claudio Fanconi*, Mihaela van der Schaar

Treatment Effect Estimation for Optimal Decision-Making
Dennis Frauen*, Valentyn Melnychuk, Jonas Schweisthal, Mihaela van der Schaar, Stefan Feuerriegel

Timely Clinical Diagnosis through Active Test Selection
Silas Ruhrberg Estévez*, Nicolás Astorga, Mihaela van der Schaar

Semantic-KG: Using Knowledge Graphs to Construct Benchmarks for Measuring Semantic Similarity
Qiyao Wei*, Edward Morrell, Lea Goetz, Mihaela van der Schaar

Simulating Viva Voce Examinations to Evaluate Clinical Reasoning in Large Language Models
Christopher Chiu*, Silviu Pitis, Mihaela van der Schaar

PhD Opportunities at the van der Schaar Lab

We are looking for 4 fully funded PhDs to join our lab! Applications now OPEN!

About our PhD programme

- Based at the **University of Cambridge (DAMTP)**
- Work at the cutting edge in a world-leading lab
- Projects with a purpose; work that can change the world
- **32** papers accepted at four largest AI/ML conferences (NeurIPS, ICML, ICLR, AISTATS) in the past year

Join our PhD Open Day

- **Monday 20 October, 9:30am (BST)**
(virtual)
- Hear from current PhD students, explore research areas, and ask questions

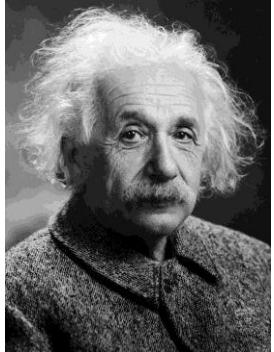
Apply through our website:

www.vanderschaar-lab.com/join-the-van-der-schaar-lab/

For any queries, please email:

vanderschaarlab@damtp.cam.ac.uk

Scan the QR code
to register for the
PhD Open Day:



van_der_Schaar
\ LAB

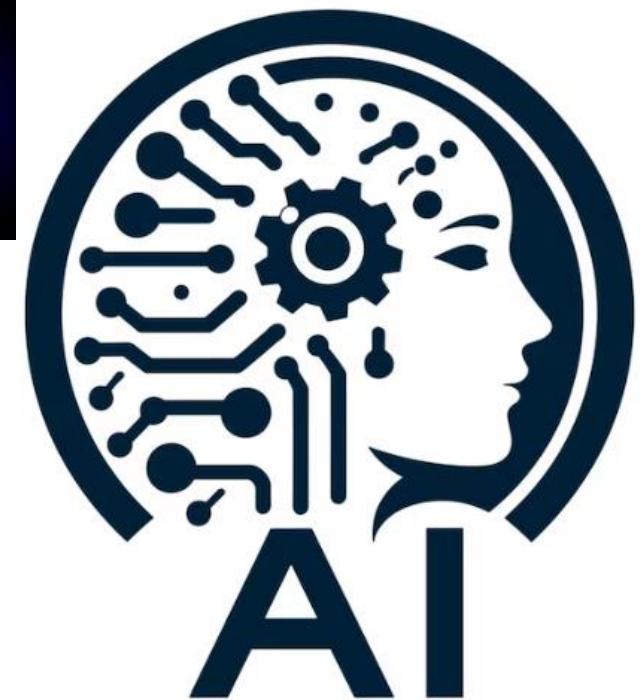
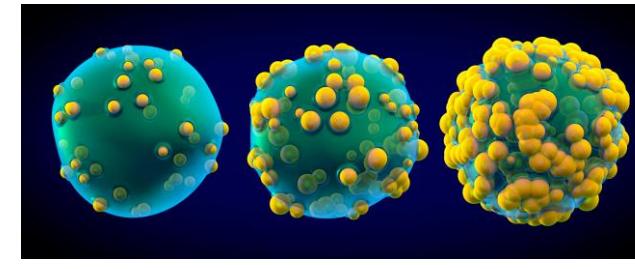
vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Scientific discovery in the era of AI

- ◆ If Einstein had access to powerful AI, would he still have needed intuitive leaps or would AI have led him directly to relativity?
 - ◆ Could AI agents reveal laws of nature that even the greatest human minds (Einstein, Hill, Newton) could never have grasped alone?
 - ◆ In an era of AI-driven discovery, do scientists remain the explorers or are we becoming interpreters of insights unearthed by our digital counterparts?
 - ◆ Will creativity in science shift from deriving answers to framing the most meaningful questions?
 - ◆ Are we approaching an age where discovery emerges from symbiotic human–AI partnerships where AI collaborates with us, rather than replace us?
 - ◆ And if so, what does it mean to be a scientist when knowledge itself can now be generated, reasoned, and evolved by AI agents?

This talk



We are entering a new **paradigm of discovery**, driven not by static models or datasets, but by **AI agents** capable of reasoning, experimentation, and evolving knowledge, transforming science from human-centric to **co-creative**

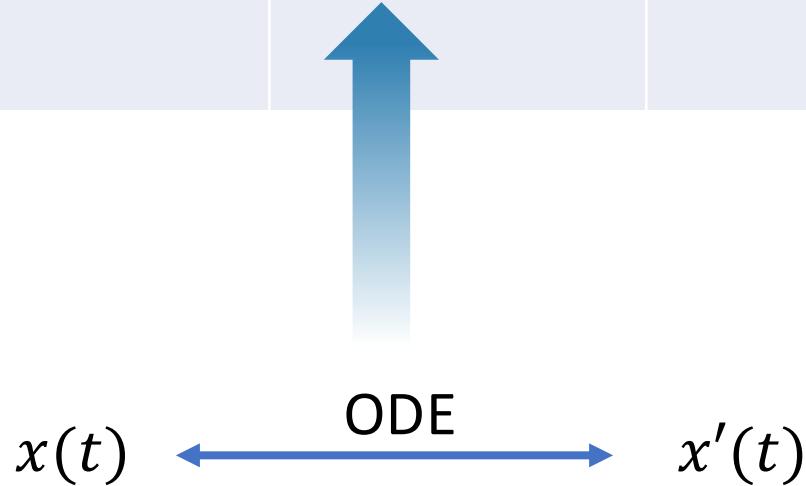
- **LLM-based AI Agents**
 - Why are they exciting
 - Examples
- **Genies: Next-generation AI Agents**
- **Networks of Autonomous Scientific Agents**
- **Join forces with us**

Discovering scientific laws

- Uncovering the Fundamental Laws Governing System Evolution Over Time
- Why do we care?
- Applications: Medicine, Physics, Finance, Climate, etc.

van_der_Schaar
\\ LAB

vanderschaar-lab.com



UNIVERSITY OF
CAMBRIDGE

Discovery of governing equations using ML

	Explicit function	Ordinary differential equation	Partial differential equation
Typical form		$\frac{dx}{dt} = f(x, t)$	
Examples			

A hard problem

Why do we care about ODEs?

Almost everything in medicine is a dynamical system

1. Pharmacokinetic (PK) Models
2. Pharmacodynamic (PD) Models
3. Physiological-Based Pharmacokinetic (PBPK) Models
4. Homeostatic Regulation Models and Non-Homeostatic models
5. Epidemic and Population Dynamics
6. Biochemical Pathway Models
7. Physiological Models

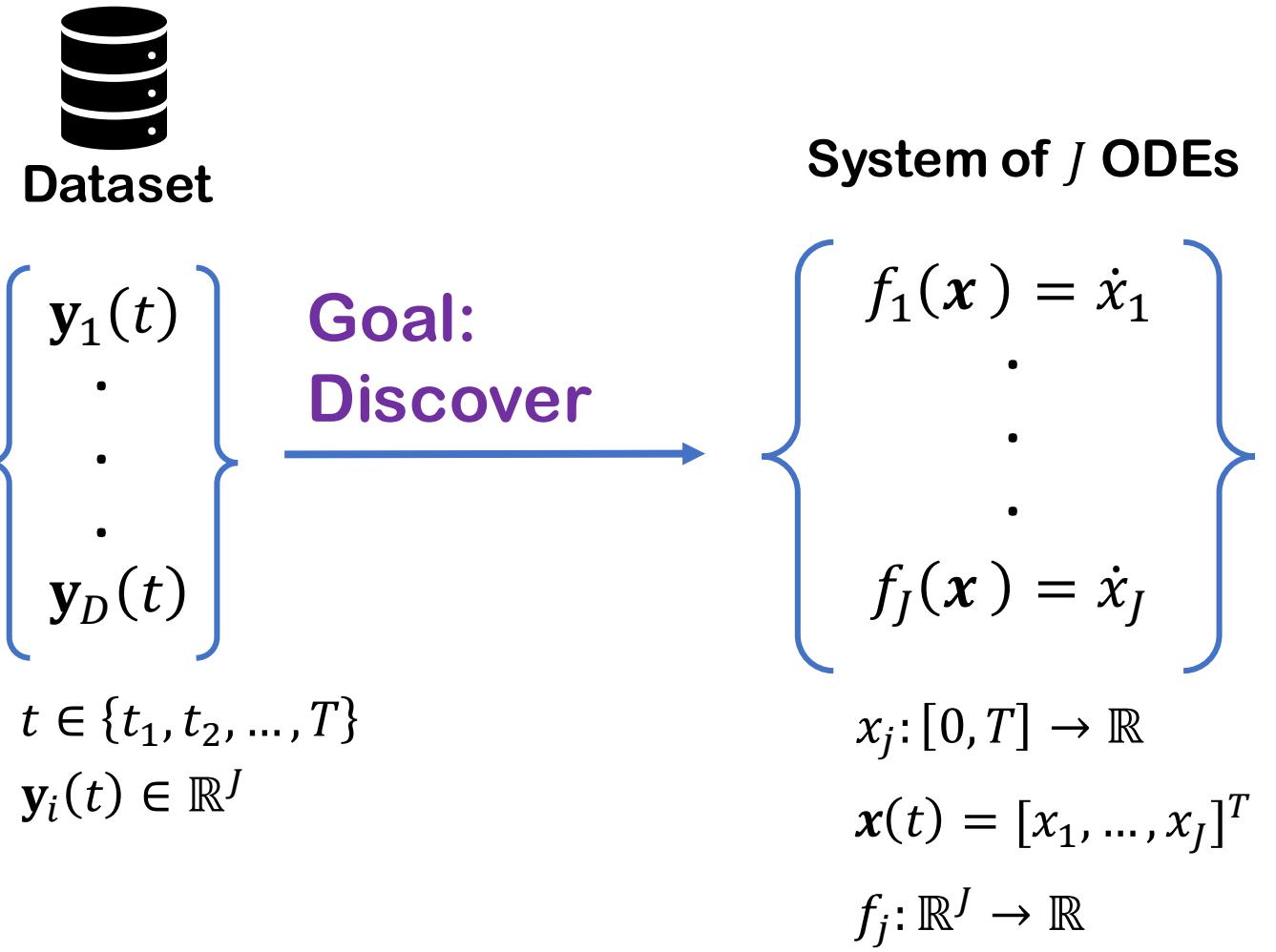
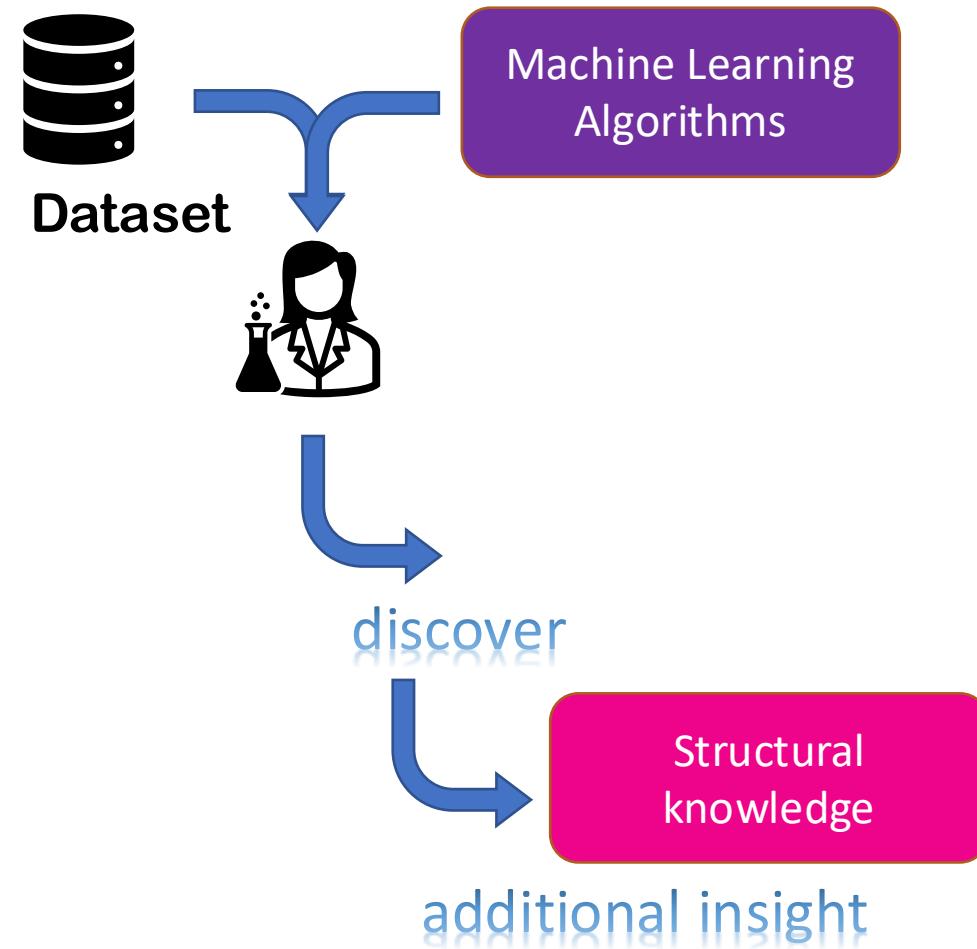
van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

To describe dynamical systems, we need

Differential equations



- Equations that involve derivatives
- Commonly used to describe continuous-time dynamical systems
- Describe the change in infinitesimal time (time derivative)
- E.g. Ordinary DE

$$x(t) \xleftrightarrow{\text{ODE}} x'(t)$$

Learning ODEs from data:
A hard problem

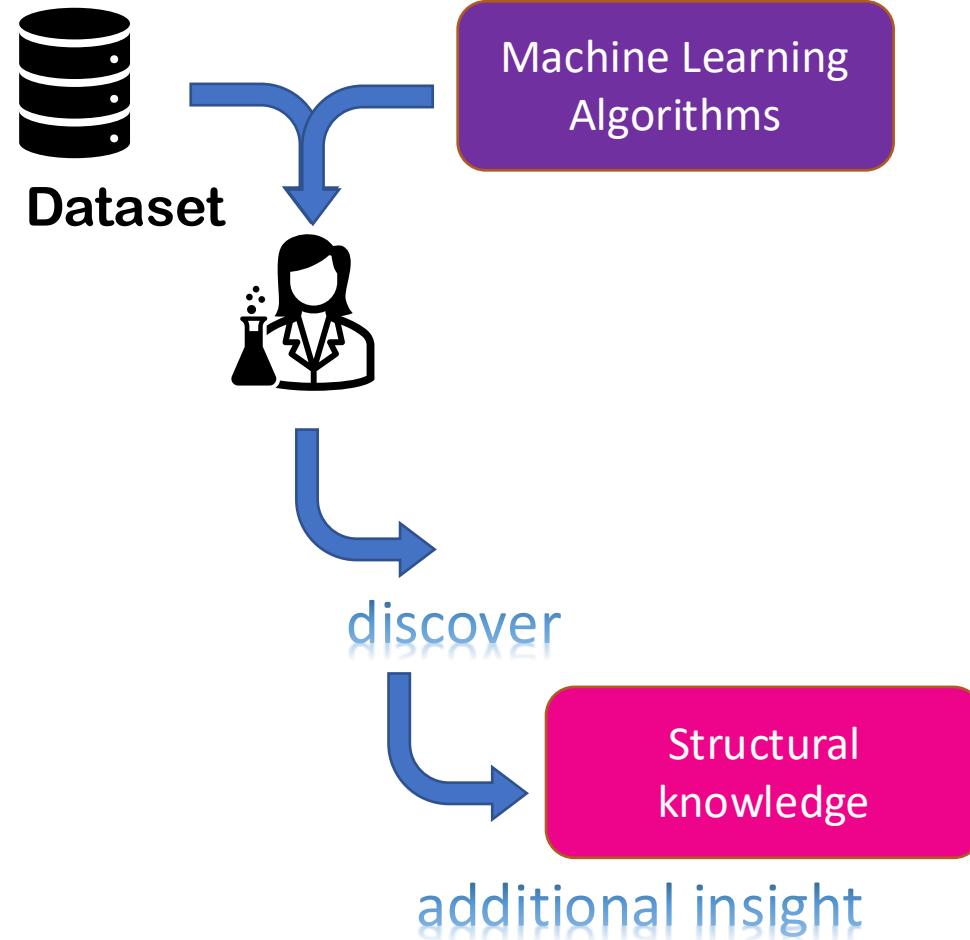
Problem formulation

Why is discovering ODEs from data challenging?

1. The time derivative is not observed

- Only observe the states over time
- Conventional *symbolic regression* methods are not applicable

2. It is difficult to estimate the time derivative


- States are observed sporadically with noise
- Naïve two-step symbolic regression is likely to fail

3. Difficulty in directly solving the initial value problem of ODE

- The true initial condition is unknown & difficult to infer
- Sensitive to initial condition
- Computationally challenging

Discover closed-form ordinary differential equations (ODEs) from observed trajectories - *D-CODE*

Z. Qian, K. Kacprzyk, M. van der Schaar,
ICLR 2022

Zhaozhi Qian

Krzysztof Kacprzyk

van_der_Schaar
\\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

D-CODE: theory

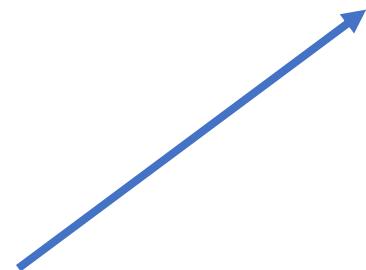
Variational formulation of ordinary differential equations

$$\dot{x}_j(t) = f_j(\mathbf{x}(t)), \forall j = 1, \dots, J, \forall t \in [0, T] \quad (1)$$

Definition 1. Consider $J \in \mathbb{N}^+$, $T \in \mathbb{R}^+$, continuous functions $\mathbf{x} : [0, T] \rightarrow \mathbb{R}^J$, $f : \mathbb{R}^J \rightarrow \mathbb{R}$, and $g \in \mathcal{C}^1[0, T]$, where \mathcal{C}^1 is the set of continuously differentiable functions. We define the functionals

$$C_j(f, \mathbf{x}, g) := \int_0^T f(\mathbf{x}(t)) g_j(t) dt, \quad j = 1, 2, \dots, J \quad (3)$$

Theorem 1. Consider $J \in \mathbb{N}^+$, $j \in \{1, 2, \dots, J\}$, $f : \mathbb{R}^J \rightarrow \mathbb{R}$ a continuous function, and let $\mathbf{x} : [0, T] \rightarrow \mathbb{R}^J$ be a continuous function. Consider a sequence of functions $(\hat{\mathbf{x}}_k)$ in $L^2[0, T]$ that is continuously differentiable. If $(\hat{\mathbf{x}}_k)$ converges to \mathbf{x} in $L^2[0, T]$, then $\lim_{k \rightarrow \infty} C_j(f, \mathbf{x}, g_j) = d_{\mathbf{x}}(f, f^*)$, where $f^* : \mathbb{R}^J \rightarrow \mathbb{R}$ is a continuously differentiable function f



$$\lim_{S \rightarrow \infty} \lim_{k \rightarrow \infty} \sum_{s=1}^S C_j(f, \hat{\mathbf{x}}_k, g_s)^2 = d_{\mathbf{x}}(f, f^*)^2, \quad (7)$$

where $\{g_1, g_2, \dots\}$ is a Hilbert (orthonormal) basis for $L^2[0, T]$ such that $\forall i$, $g_i(0) = g_i(T) = 0$ and $g_i \in \mathcal{C}^1[0, T]$.

Natural choice

$$g_s(t) = \sqrt{2/T} \sin(s\pi t/T)$$

LLM Agents

LLM Agents: Beyond Text Generation - LLMs That Act

LLMs: Large Language Models that predict text based on input prompts.

LLM Agents: Systems that augment LLMs with:

- Context management (memory)

- Decision-making (planning, goal-setting)

- Actions (tool usage, APIs, environment interaction)

The LLM Agent Loop

Prompt & Context: The agent queries the LLM with a prompt that includes goals, instructions, data etc.

Reasoning: The agent reasons (e.g. CoT) considering multiple steps or sub-tasks.

Action: The agent can execute actions (e.g., call a tool, fetch external info, revise the approach).

Feedback: The agent updates its memory/context with the results of the action.

Iteration: Cycle repeats until the goal is reached (or stopping criterion is met).

Take away: LLM is no longer just a passive language predictor; it's part of a loop that actively pursues objectives.

D3: A Discovery Agent for Transparent Dynamical Laws

Data-Driven Discovery of Dynamical Systems using Large Language Models

NeurIPS 2024, Spotlight

Samuel Holt

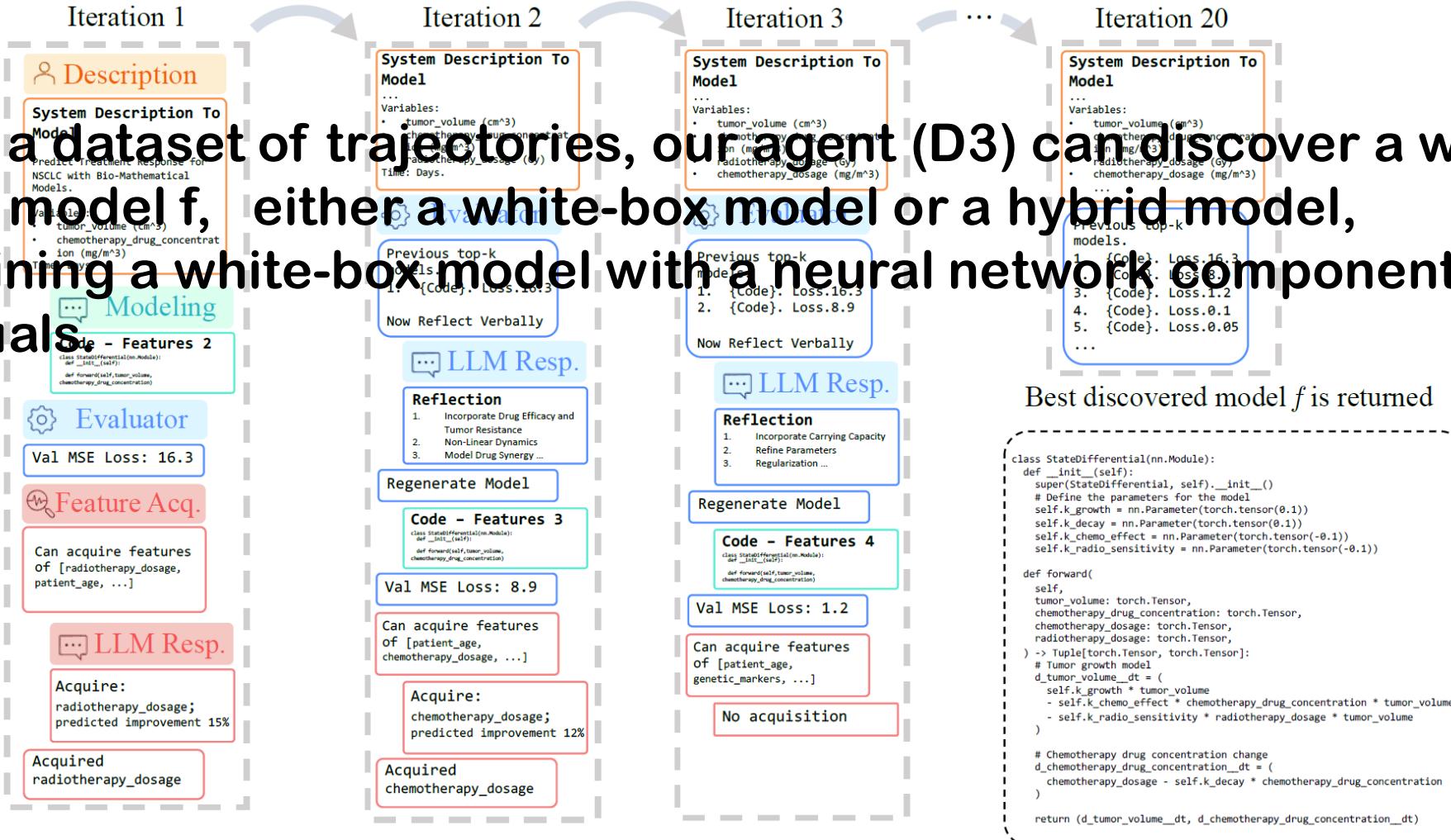
Zhaozhi Qian

Tennison Liu

Jim Weatherall

Mihaela van der
Schaar

van_der_Schaar
\ LAB


vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Our agent iteratively discovers and refines system dynamics

Given a dataset of trajectories, our agent (D3) can discover a well-fitting model f , either a white-box model or a hybrid model, combining a white-box model with a neural network component fit to residuals

New Discovered PK Warfarin Model

Experiments on a real pharmacokinetic Warfarin dataset

- D3 uncovers a new plausible pharmacokinetic model
- Outperforms existing literature
- Highlighting its potential for precision dosing in clinical applications

$$\frac{dC}{dt} = \sqrt{D} - k_{\text{eff}} \cdot \frac{C}{K_m + C},$$
$$k_{\text{eff}} = k_{e,\text{base}} + k_{e,\text{age}} \cdot (A - \bar{A}) + k_{e,\text{sex}} \cdot (S - \bar{S})$$
$$+ k_{\text{decay}} \cdot C + k_{ds} \cdot D \cdot (S - \bar{S})$$
$$+ k_{as} \cdot (A - \bar{A}) \cdot (S - \bar{S}) + k_{ad} \cdot D \cdot (A - \bar{A})$$

Table 3: Warfarin Modeling Comparison

Method	Warfarin Best Model Test MSE
Existing Warfarin PK	0.646
D3-white-box	0.39
D3-hybrid	0.271

New Discovered PK Warfarin Model: Expert commentary

- Prof. Jean-Baptiste Woillard, Pharmacologist. “The **model is promising** and **pharmacokinetically plausible**. The next step is to apply D3 to other clinically relevant PK drug datasets.”
- Prof. Richard Peck, Clinical Pharmacologist. “This model is reasonable and potentially superior. It represents a **significant advance in clinical pharmacology** by automatically identifying robust PK models.”
- Prof. Eoin McKinney, Clinician. “**This model is significant**, as consortiums are dedicated to improving Warfarin [Consortium, 2009]. The **model adds novel components**, such as the Michaelis component for time-varying changes and novel interaction terms like age-sex.”

Will LLM-Agents replace researchers?

Discovery of governing equations using ML

	Explicit function	Implicit function	Ordinary differential equation	Partial differential equation
Typical form	$y = f(x, t)$	$f(x, y) = c$	$\frac{dx}{dt} = f(x, t)$	$\frac{\partial u}{\partial t} = f(u, x)$

A SUPER hard problem

van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Why do we care about PDEs?

While ODEs model **time-dependent processes in medicine**, PDEs are necessary when **spatial variations are important**

Medical System	Requires PDEs?	Why?
Drug diffusion in tissues	<input checked="" type="checkbox"/> Yes	Spatial transport of drugs through organs/tissues.
Cancer growth & metastasis	<input checked="" type="checkbox"/> Yes	Tumors spread non-uniformly in space.
Cardiac & neural conduction	<input checked="" type="checkbox"/> Yes	Wave propagation in heart and brain.
Blood flow (hemodynamics)	<input checked="" type="checkbox"/> Yes	Navier-Stokes equations describe fluid dynamics.
Oxygen transport in tissues	<input checked="" type="checkbox"/> Yes	Oxygen diffuses through capillaries to tissues.
Tissue deformation & biomechanics	<input checked="" type="checkbox"/> Yes	Soft tissue and bone experience mechanical forces.
Epidemic spread with spatial effects	<input checked="" type="checkbox"/> Yes	Diseases spread differently across regions.
Radiation therapy dose planning	<input checked="" type="checkbox"/> Yes	Modeling energy transport through tissues.

What about higher order ODEs and PDEs?

	$\frac{\partial u}{\partial t}$	$\frac{\partial^2 u}{\partial t^2}$	$\frac{\partial^2 u}{\partial t \partial x}$	$u \frac{\partial u}{\partial t}$
$\frac{du}{dt}$	$\frac{\partial u}{\partial x}$	$\frac{\partial^2 u}{\partial x^2}$	$\frac{\partial^2 u}{\partial t \partial y}$	$u^2 \frac{\partial u}{\partial t}$
	$\frac{\partial u}{\partial y}$	$\frac{\partial^2 u}{\partial y^2}$	$\frac{\partial^2 u}{\partial x \partial y}$	$u \frac{\partial u}{\partial x}$

Difficult to search

Variational trick may not work

Kacprzyk, K., Qian, Z. & vdS
D-CIPHER: Discovery of Closed-form
Partial Differential Equations
(NeurIPS 2023)

Krzysztof Kacprzyk



Zhaozi Qian

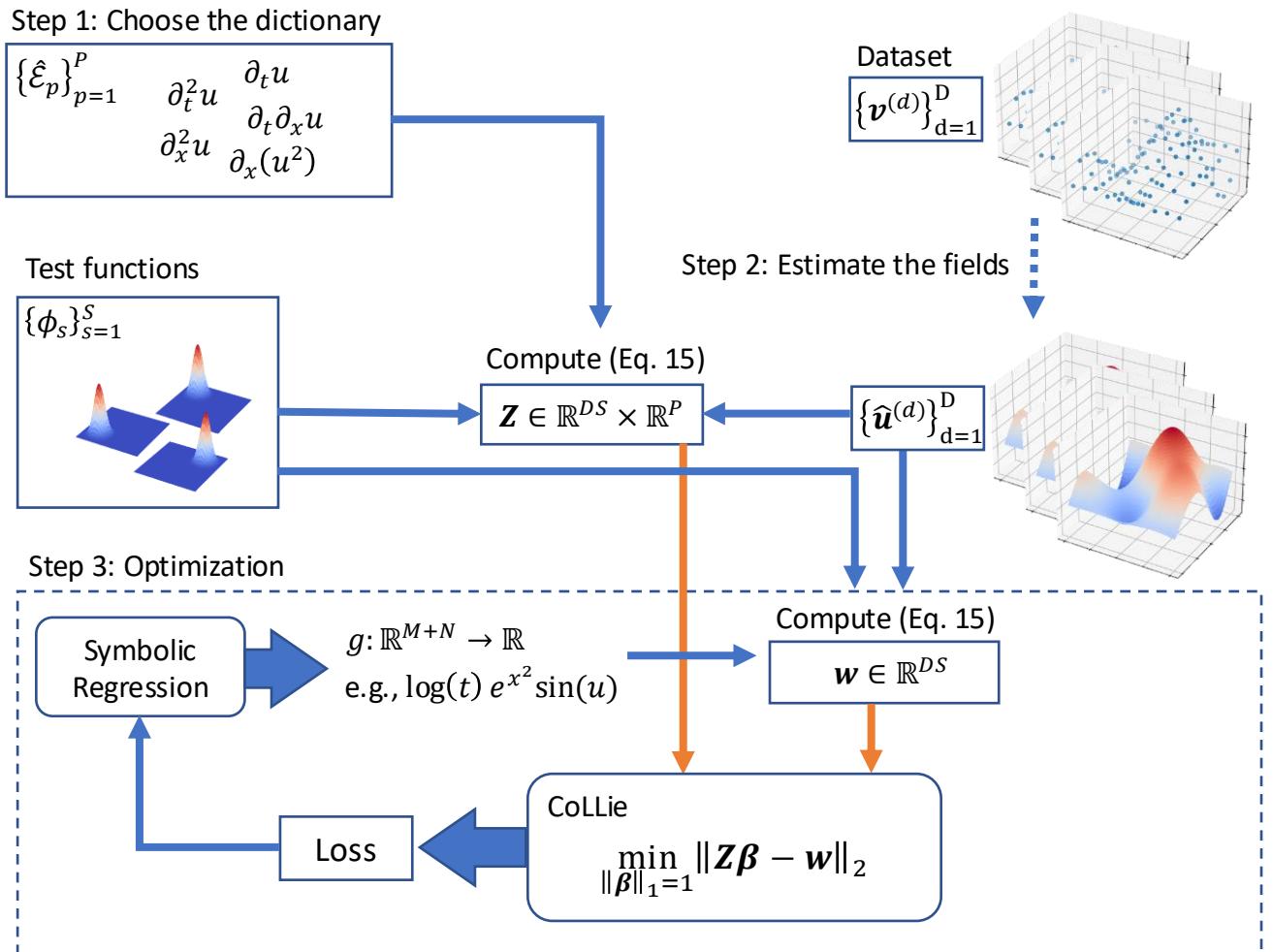
van_der_Schaar
\ LAB

Any PDE: Derivative-bound and derivative-free part

Currently the broadest family of PDEs that admit variational formulation

van_der_Schaar
\ LAB

vanderschaar-lab.com



UNIVERSITY OF
CAMBRIDGE

D-CIPHER

- **Algorithm**
 - **Uses variational formulation**
 - **Searches through all closed-form derivative-free parts**
 - **Searches through a linear subspace of derivative-bound parts**

Kacprzyk, K., Qian, Z. & van der Schaar, M.
D-CIPHER: Discovery of Closed-form Partial Differential Equations. (NeurIPS 2023)

van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Do we need Equations to Understand Dynamical Systems?

Kacprzyk, K., & van der Schaar, M. (2025).
No Equations Needed: Learning System
Dynamics Without Relying on Closed-Form ODEs.
ICLR 2025.

Krzysztof Kacprzyk

van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Do we need Equations? Why Equations?

Syntactic representation

$$\frac{d\rho}{dt} = (\alpha_0 - \mu + \mu \cdot \Lambda) \cdot \rho - \mu \cdot \Lambda \cdot \rho^2$$

Logistic growth model

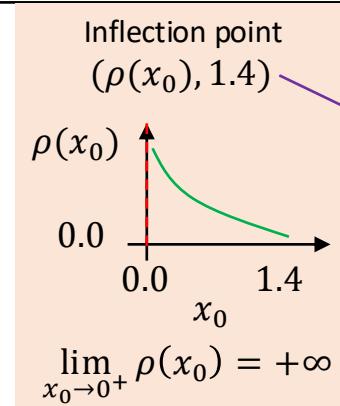
analysis

system behavior

Semantic representation

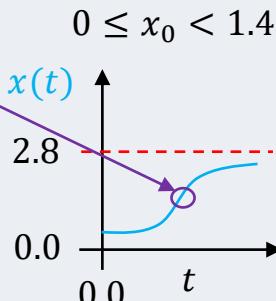
van_der_Schaar
\ LAB

vanderschaar-lab.com

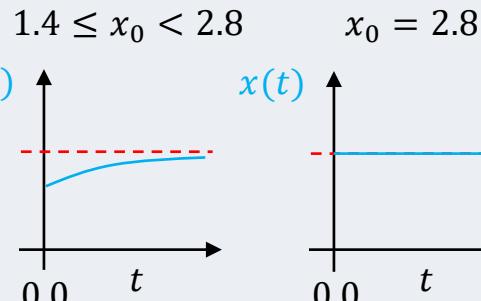


UNIVERSITY OF
CAMBRIDGE

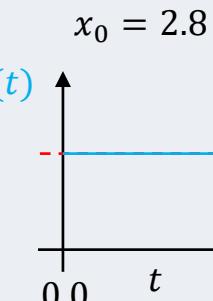
Syntactic vs. Semantic representation of an ODE

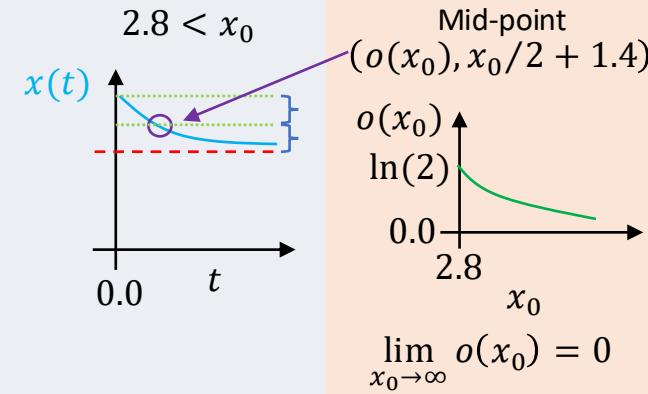

Syntactic representation

$$\begin{aligned}\dot{x}(t) &= x(t) \left(1 - \frac{x(t)}{2.8}\right) \\ x(0) &= x_0\end{aligned}$$



Semantic representation


$x(t)$


$1.4 \leq x_0 < 2.8$

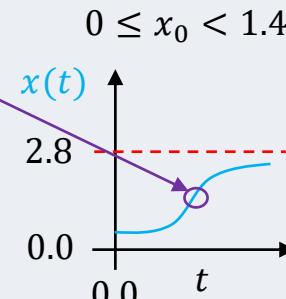
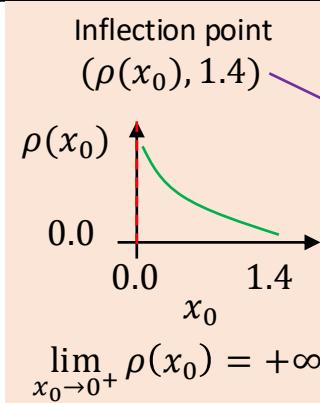

$x_0 = 2.8$

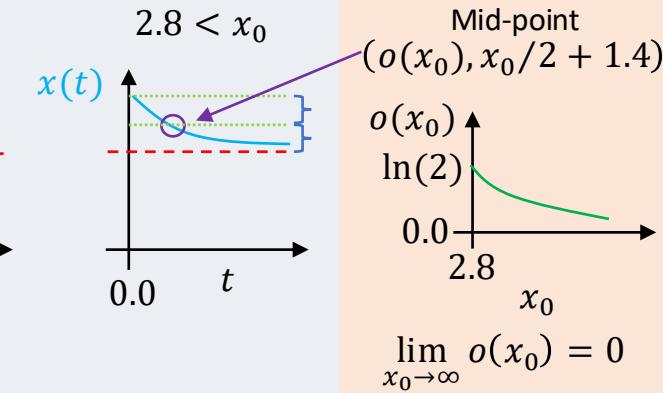
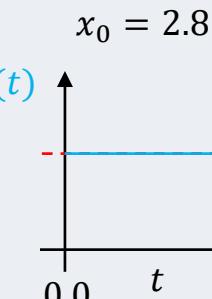
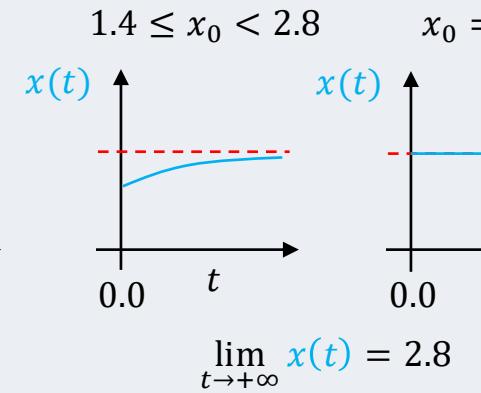
$2.8 < x_0$

Mid-point $(o(x_0), x_0/2 + 1.4)$

- symbolic form

Semantic representation:

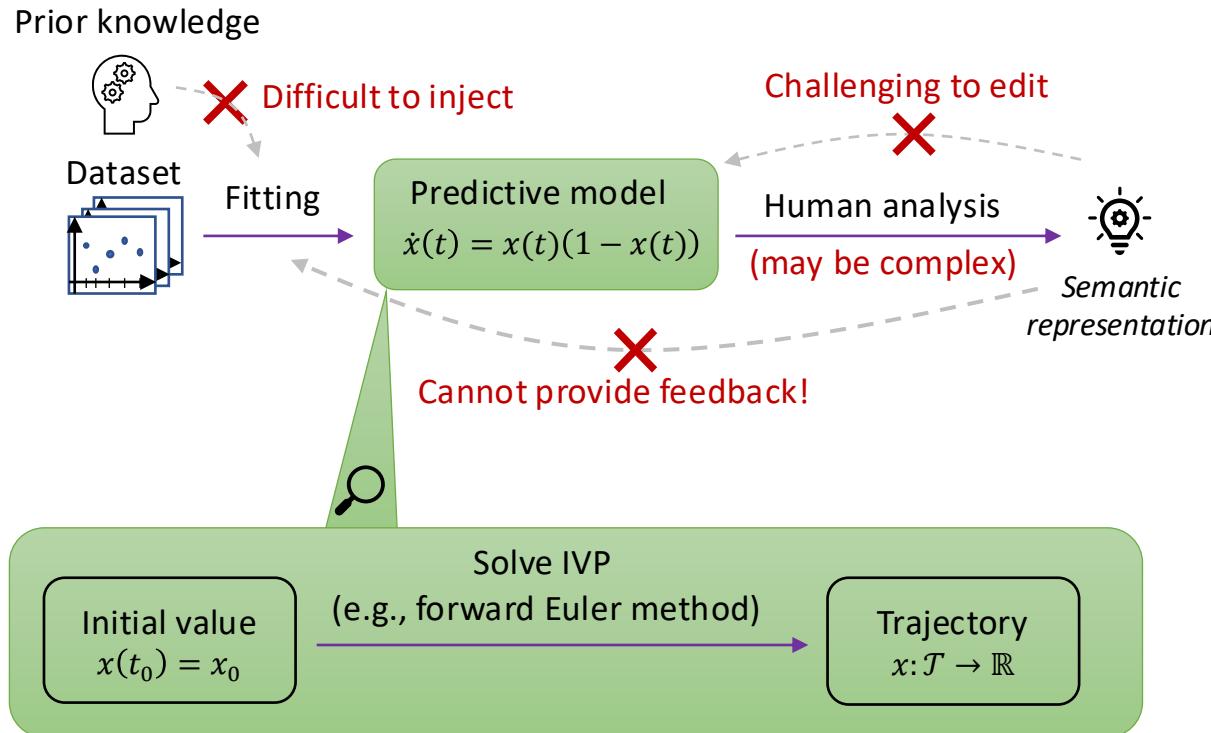


• behaviour of a dynamical system
• shape, properties, asymptotic behavior
• Semantic representation of a forecasting model, including a system of ODEs, describes changes under different initial cts




Syntactic vs. Semantic representation of an ODE

Syntactic representation

$$\dot{x}(t) = x(t) \left(1 - \frac{x(t)}{2.8}\right)$$
$$x(0) = x_0$$

Semantic representation

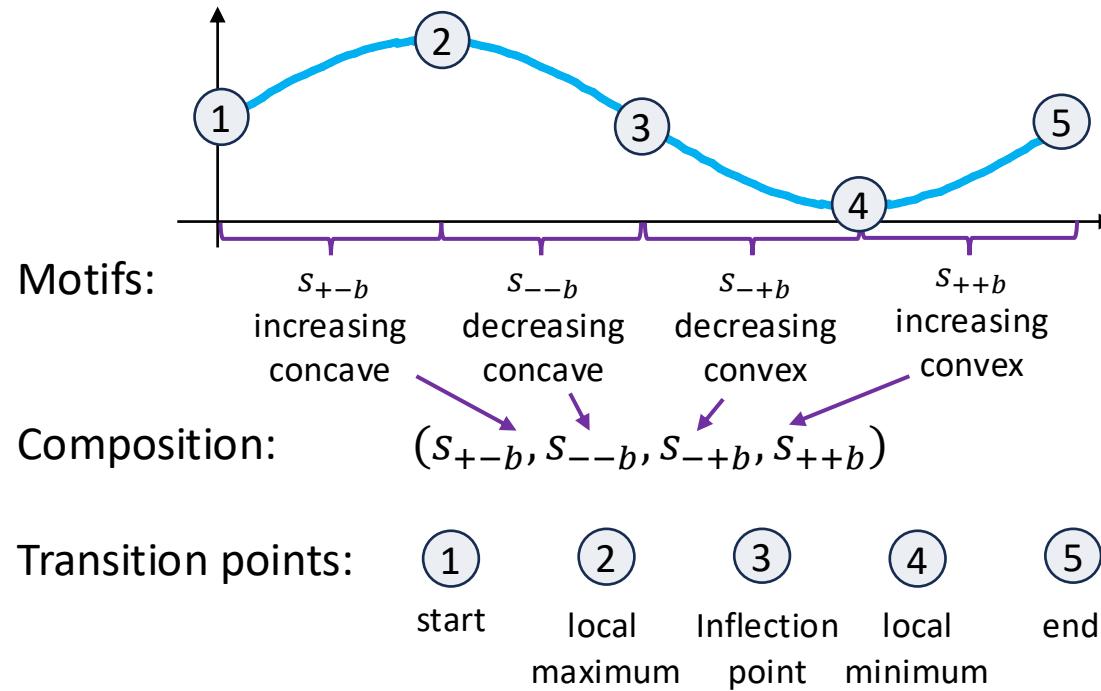


The focus is often on discovering equations ...
and yet, what we actually want is to unravel these semantic representations

From Discovery and Analysis to Direct Semantic Modeling

Two-step modelling (traditional)

Direct semantic modelling (ours, no equations)


What do we mean by semantic representation?

Formalizing Semantic Representations: Shape of trajectory

Kacprzyk, Liu, vdS, Towards Transparent Time Series Forecasting. *ICLR 2024*

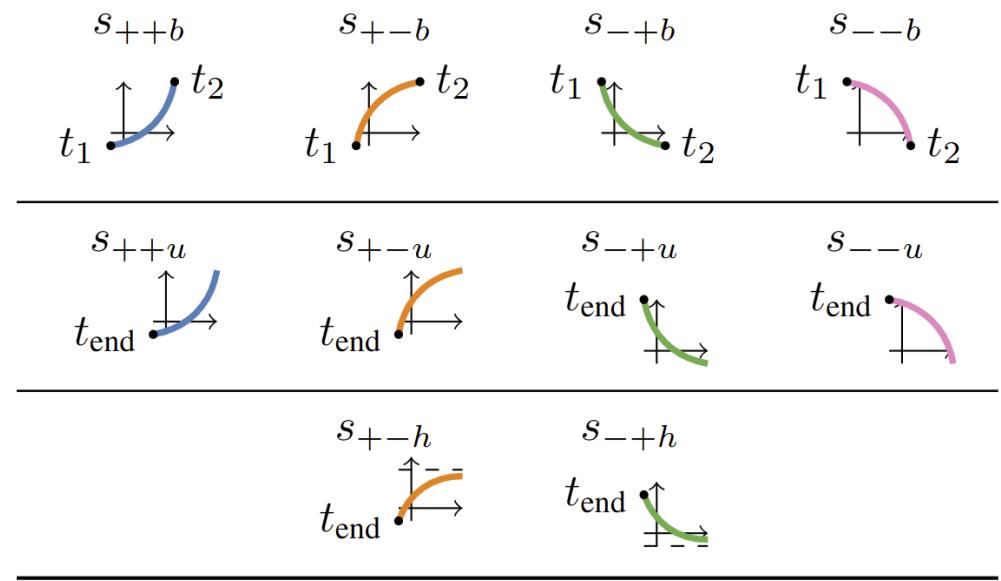
Krzysztof Kacprzyk

Divide the shape of trajectory into smaller intervals where the trajectory has a particular shape, called motifs

van_der_Schaar
LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

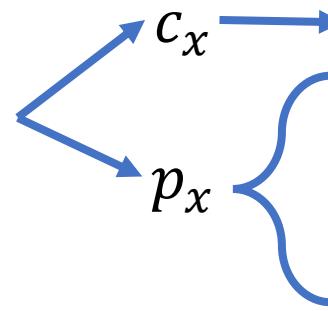

Formalizing Semantic Representations: Shape of trajectory

Kacprzyk, Liu, vdS, Towards Transparent Time Series Forecasting. *ICLR 2024*

Krzysztof Kacprzyk

In semantic ODEs, we extended this framework to add motifs that describe unbounded trajectories

van_der_Schaar
\ LAB

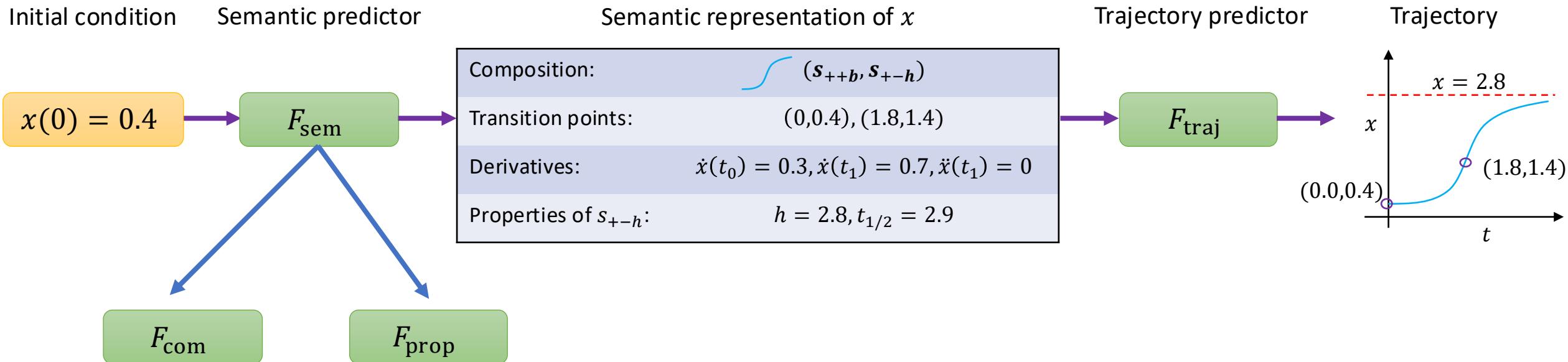

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

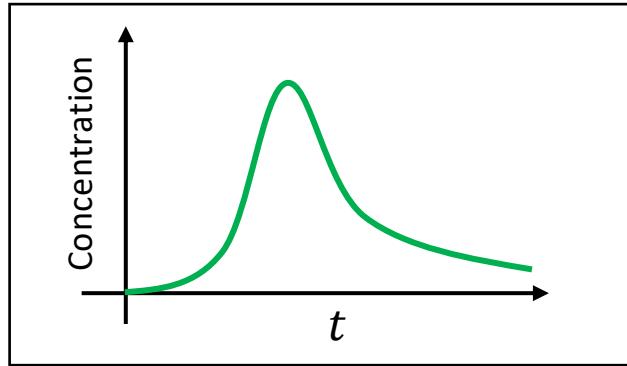
Formalizing Semantic Representations: Recap

Semantic representation of x

Composition:	(s_{++b}, s_{+-h})
Transition points:	$(0,0.4), (1.8,1.4)$
Derivatives:	$\dot{x}(t_0) = 0.3, \dot{x}(t_1) = 0.7, \ddot{x}(t_1) = 0$
Properties of s_{+-h} :	$h = 2.8, t_{1/2} = 2.9$


van_der_Schaar
\ LAB

vanderschaar-lab.com



UNIVERSITY OF
CAMBRIDGE

How do we build Semantic ODEs?

Semantic Inductive Biases

ODE discovery

$$\dot{x}(t) = \sum_{i=1}^n \alpha_i g_i(t)$$

$n \leq 5$
 $n \leq 10$

$$\begin{matrix} x^3 & & & \\ & xt & & \\ & & x^2 & \\ & & & \log(t) \end{matrix}$$

Semantic ODE Semantic motifs

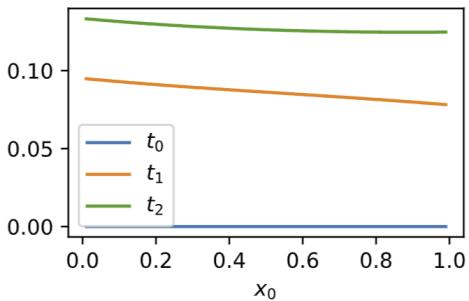
$$(s_{-+h}) \quad (s_{--b}, s_{-+h}) \quad (s_{+-b}, s_{--b}, s_{-+h})$$
$$(s_{-+b}, s_{--b}, s_{-+h}) \quad (s_{++b}, s_{+-b}, s_{--b}, s_{-+h})$$

Can select number and types of motifs

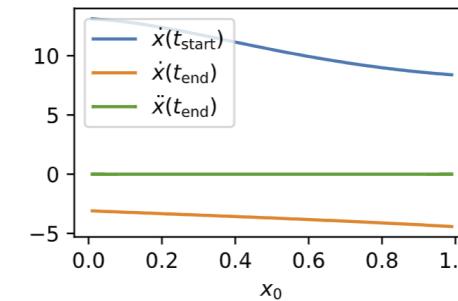
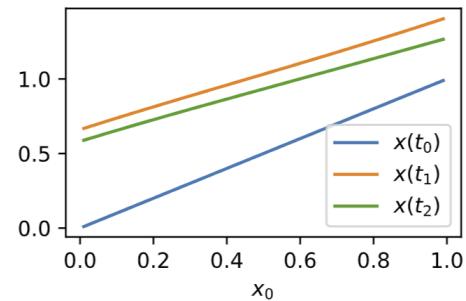
van_der_Schaar
\\ LAB

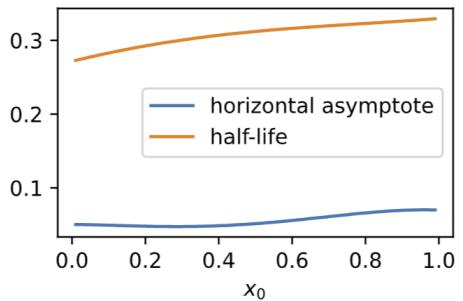
vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE


Comprehensibility

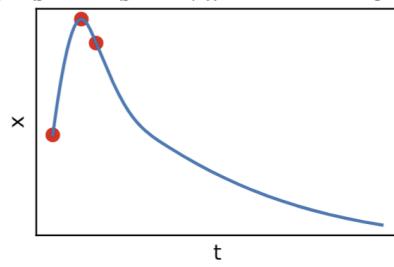
Model	Syntactic biases	Semantic biases	Syntactic representation	Semantic representation	In-domain ($t \leq 1$)	Out-domain ($t > 1$)
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 1$	NA	$\dot{x}(t) = -3.06x(t)t$	NA	$0.222_{(0.041)}$	$0.024_{(0.005)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 2$	NA	$\dot{x}(t) = 5.56 - 43.10x(t)t$	NA	$0.112_{(0.027)}$	$0.054_{(0.010)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 5$	NA	Equation (7)	NA	$0.101_{(0.023)}$	$16.850_{(0.021)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 10$	NA	Equation (8)	NA	$0.029_{(0.005)}$	$18.686_{(0.003)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 15$	NA	Equation (9)	NA	$0.020_{(0.004)}$	$77.577_{(1.249)}$
Semantic ODE	NA	$ c_x \leq 4, c_x \text{ ends with } s_{-+h}$	NA	Figure 7	0.016 (.004)	0.033 (.006)



Composition map
 $(s_{+-b}, s_{--b}, s_{-+h})$ if $-\infty < x_0 < +\infty$

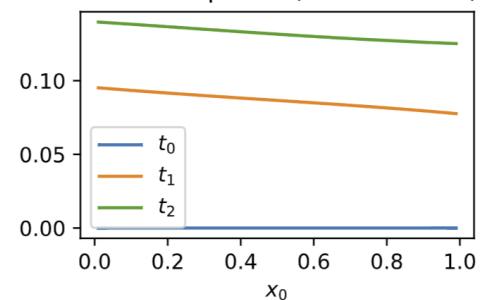

Transition points (t -coordinates)

Property map for composition $(s_{+-b}, s_{--b}, s_{-+h})$
 Transition points (x -coordinates)

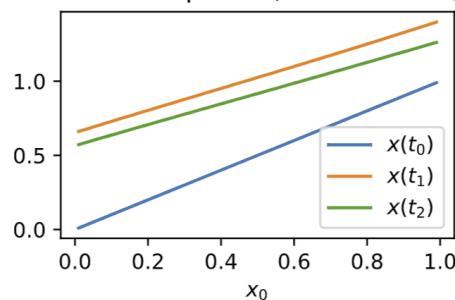
Properties of unbounded motif s_{-+h}

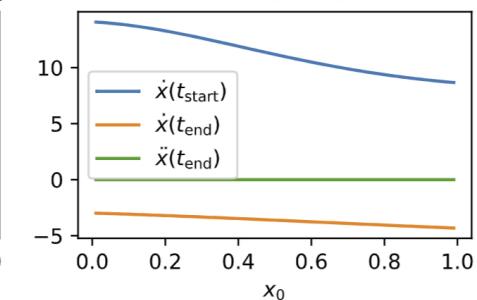


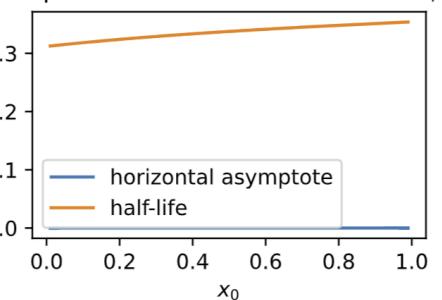
Editing

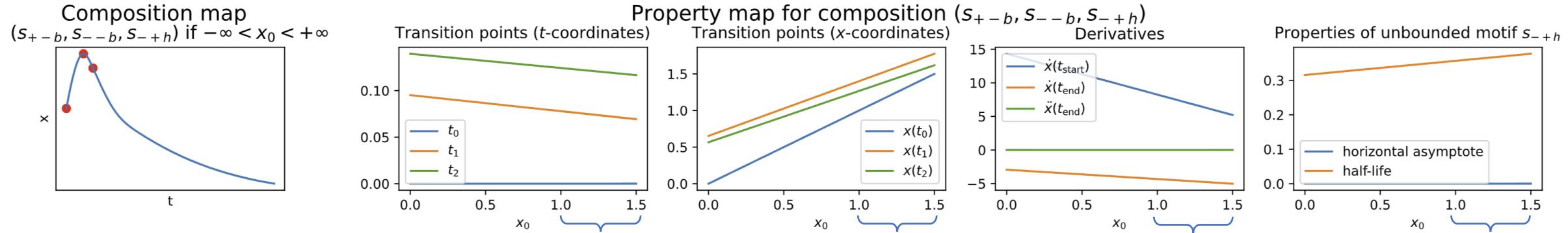

Edit and retrain our model while fixing this asymptote to 0

Model	Syntactic biases	Semantic biases	Syntactic representation	Semantic representation	In-domain ($t \leq 1$)	Out-domain ($t > 1$)
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 1$	NA	$\dot{x}(t) = -3.06x(t)t$	NA	$0.222_{(0.041)}$	$0.024_{(0.005)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 2$	NA	$\dot{x}(t) = 5.56 - 43.10x(t)t$	NA	$0.112_{(0.027)}$	$0.054_{(0.010)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 5$	NA	Equation (7)	NA	$0.101_{(0.023)}$	$16.850_{(0.021)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 10$	NA	Equation (8)	NA	$0.029_{(0.005)}$	$18.686_{(0.003)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 15$	NA	Equation (9)	NA	$0.020_{(0.004)}$	$77.577_{(1.249)}$
Semantic ODE	NA	$ c_x \leq 4, c_x \text{ ends with } s_{-+h}$	NA	Figure 7	0.016 _(.004)	0.033 _(.006)


Composition map
(s_{+-b}, s_{-b}, s_{-+h}) if $-\infty < x_0 < +\infty$


Transition points (t -coordinates)


Property map for composition (s_{+-b}, s_{-b}, s_{-+h})
Transition points (x -coordinates)


Derivatives

Properties of unbounded motif s_{-+h}

Extrapolation

Model	Syntactic biases	Semantic biases	Syntactic representation	Semantic representation	$x_0 \in (0, 1)$	$x_0 \in (1, 1.5)$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 1$	NA	$\dot{x}(t) = -3.06x(t)t$	NA	$0.222_{(0.041)}$	$0.240_{(0.035)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 2$	NA	$\dot{x}(t) = 5.56 - 43.10x(t)t$	NA	$0.112_{(0.027)}$	$0.131_{(0.025)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 5$	NA	Equation (7)	NA	$0.101_{(0.023)}$	$7.764_{(4.938)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 10$	NA	Equation (8)	NA	$0.029_{(0.005)}$	$0.105_{(0.056)}$
SINDy	$\dot{x} = \sum_{i=1}^n \alpha_i g_i, n \leq 15$	NA	Equation (9)	NA	$0.020_{(0.004)}$	$0.203_{(0.430)}$
Semantic ODE	NA	$c_x : (s_{+-b}, s_{--b}, s_{-+h}), h = 0$	NA	Figure 13	$0.018_{(.003)}$	$0.023_{(.005)}$

Great performance without seeing without a single sample from this distribution

Extrapolation for different inputs, outside training domain

van_der_Schaar
LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

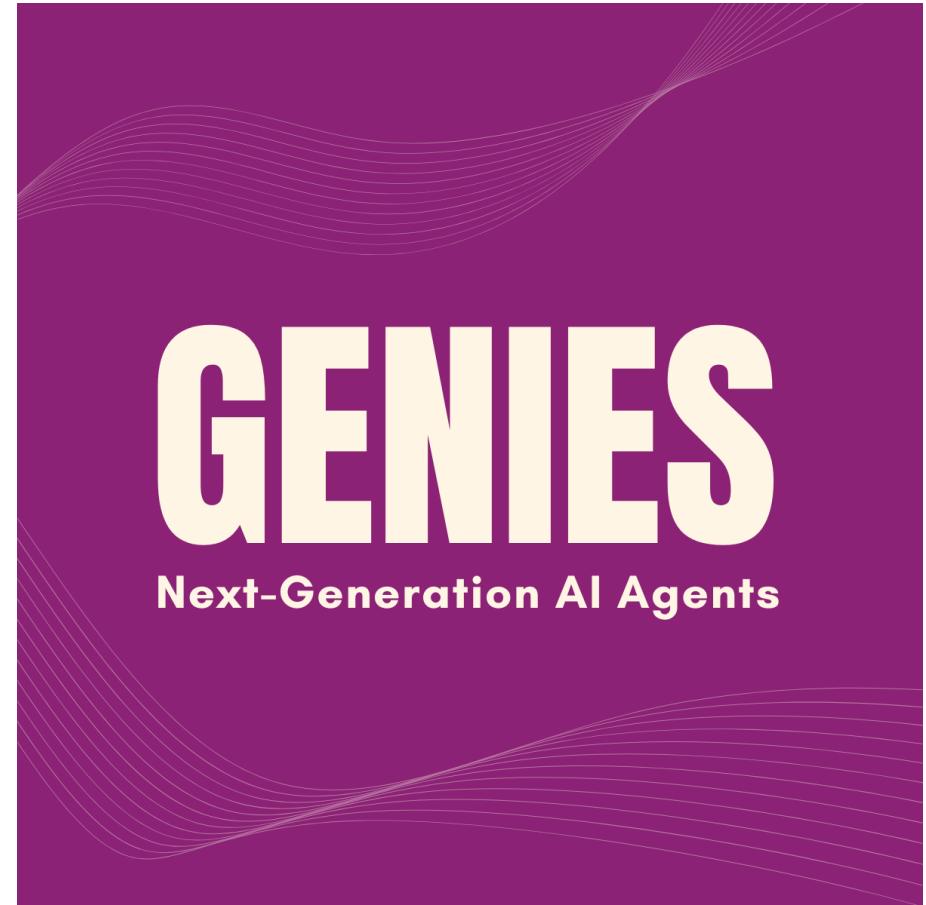
Flexibility

Not only closed formed ODEs!

Method	Logistic Growth		General ODE		Pharmacokinetic model		Mackey-Glass (DDE)		Integro-DE	
	low noise	high noise	low noise	high noise	low noise	high noise	low noise	high noise	low noise	high noise
SINDy-5	0.012 _(.002)	0.222 _(.004)	0.053 _(.012)	0.103 _(.010)	0.093 _(.004)	0.230 _(.014)	0.238 _(.023)	0.248 _(.025)	0.431 _(.051)	0.268 _(.019)
WSINDy-5	0.010 _(.000)	0.222 _(.009)	0.066 _(.009)	0.102 _(.008)	0.211 _(.009)	0.415 _(.299)	0.272 _(.032)	0.300 _(.061)	0.160 _(.066)	0.452 _(.365)
PySR-20	0.012 _(.002)	0.224 _(.007)	0.078 _(.029)	0.119 _(.029)	0.053 _(.015)	0.242 _(.039)	0.261 _(.021)	0.288 _(.031)	0.027 _(.011)	0.393 _(.144)
SINDy	0.012 _(.001)	0.218 _(.011)	0.068 _(.013)	0.115 _(.012)	0.020 _(.001)	0.209 _(.010)	0.252 _(.026)	0.257 _(.028)	0.318 _(.172)	0.248 _(.016)
WSINDy	0.010 _(.001)	0.217 _(.016)	0.062 _(.009)	0.112 _(.009)	0.038 _(.006)	0.219 _(.016)	0.200 _(.035)	0.207 _(.031)	0.152 _(.086)	0.300 _(.082)

This talk

We are entering a new **paradigm of discovery**, driven not by static models or datasets, but by **AI agents** capable of reasoning, experimentation, and evolving knowledge, transforming science from human-centric to **co-creative**


- **LLM-based AI Agents**
 - Why are they exciting
 - Examples
- **Genies: Next-generation AI Agents**

Genies – The Future of AI Agents

<https://www.vanderschaar-lab.com/genies-the-future-of-ai-agents/>

van_der_Schaar
LAB

vanderschaar-lab.com

Introducing Genies: Next-generation AI agents

- **What Are Genies?**
 - Sophisticated, multi-capable AI “companions” that generate ideas, plan strategies, reason adaptively, and learn continuously.
 - Designed to amplify human potential rather than replace it.
- **Goal**
 - Empower humans through collaboration, trust, and transparent decision-making.
 - Move beyond narrow task automation or purely reactive “agents.”

Genies: The Synergy Loops

Five Interconnected Steps

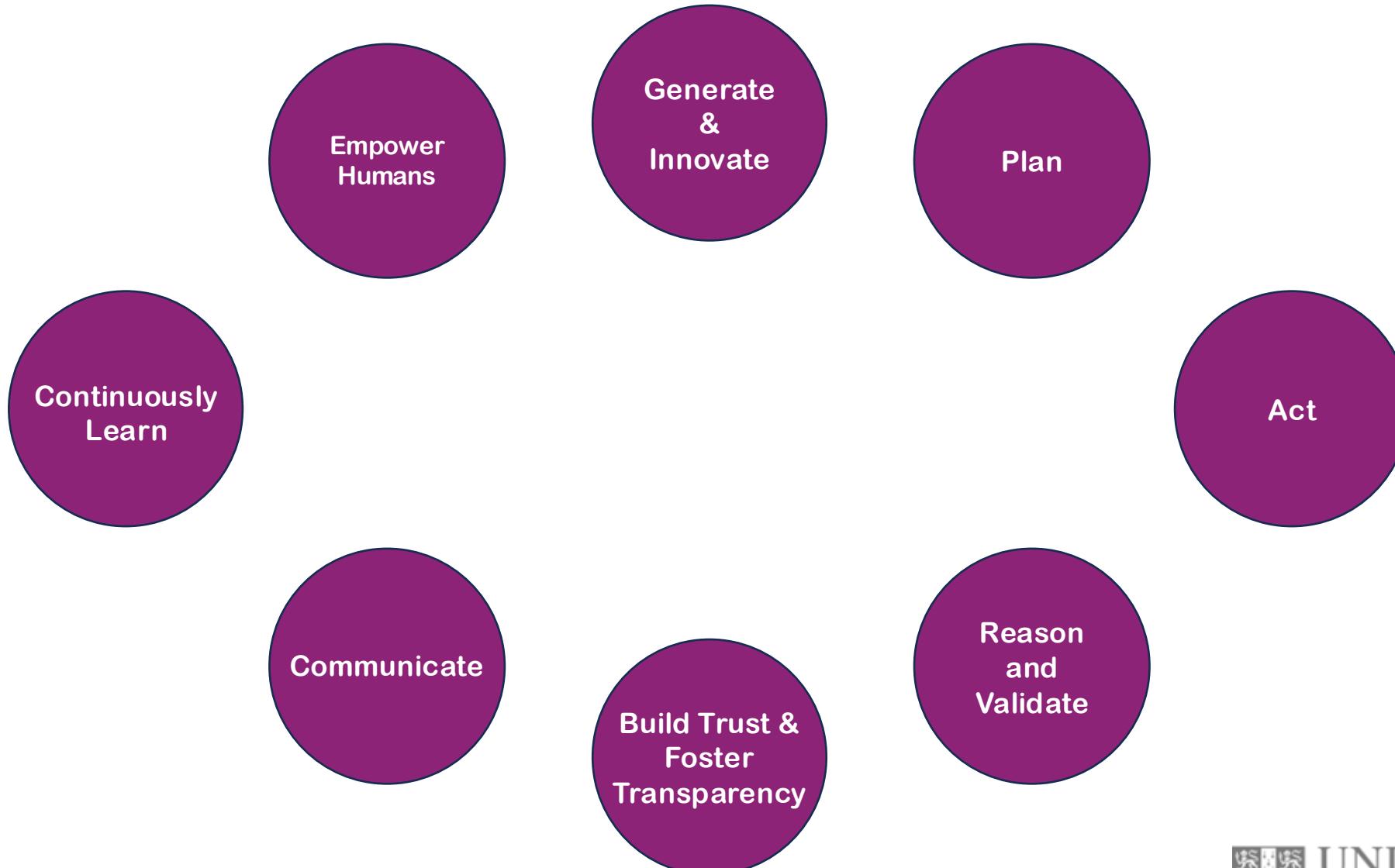
Innovation: Generating novel ideas, challenging assumptions.

Operation: Planning and executing complex strategies.

Validation: Rigorous reasoning and testing outcomes.

Evolution: Continuous communication and learning.

Empowerment: Building trust, expanding human abilities.


Self-Improving Cycle

Each step reinforces the others, allowing genies to adapt over time.

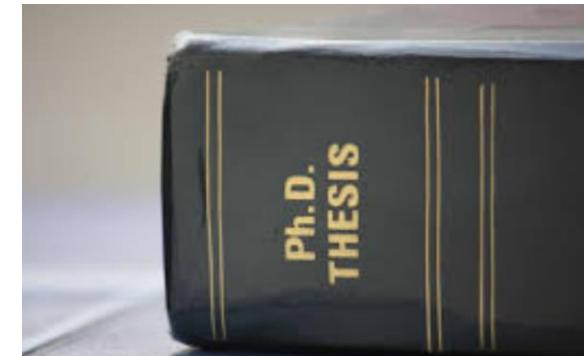
Designed for long-term partnership with humans (and other genies).

Genies – Core Capabilities

LLM Agents vs Genies

Aspect	LLM Agent	Genie
Primary Focus	Language-driven task execution	Multi-capable synergy (ideas, plans, validation, etc.)
Adaptation	Often short-term or prompt-based	Lifelong , evolving with user & environment
Memory	Limited context window or ephemeral tools	Persistent, structured, continuously integrated knowledge
Innovation	Usually reliant on user prompt or fine-tunes	Proactively generates novel strategies & creative solutions
Human Role	User queries, agent responds	Collaborative co-creation and empowerment

Genies aim for **comprehensive, long-term synergy with humans, not just short bursts of text-based help.**


A challenging agenda

101 Fundamental Questions Machine Learning Must Answer to Unlock the Potential of AI Agents

by [Prof Mihaela van der Schaar](#)

Answering each question is a

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Why We Should Be Excited: Shaping the Future of AI + Human Collaboration

Transformative Partnerships

Genies expand what's possible: advanced healthcare support, scientific discovery, personalized education, etc.

Continuous Improvement

Self-evolving loop ensures ongoing value rather than “one-and-done” or static solutions.

Potential Impacts

Research & Innovation: New breakthroughs via cross-domain synergy.

Everyday Life: Personal genies that evolve with your career, health, and creative pursuits.

van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

This talk

We are entering a new **paradigm of discovery**, driven not by static models or datasets, but by **AI agents** capable of reasoning, experimentation, and evolving knowledge, transforming science from human-centric to **co-creative**

- **LLM-based AI Agents**
 - Why are they exciting
 - Examples
- **Genies: Next-generation AI Agents**
- **Agent Networks**

The Agent Network

The Agent Network

Unleashing Self-Organising AI
for a New Economic Era

Prof Mihaela van der Schaar

<https://www.vanderschaar-lab.com/the-agent-network/>

van_der_Schaar
LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Rethinking Scientific Discovery using AI Agent Networks

Tennison Liu

Silas Estevez

David Bentley

Mihaela
van der Schaar

Hypothesis Hunting

Hypothesis hunting is the continuous and diverse exploration of large-scale datasets to surface promising findings that guide subsequent human investigation and experimental validation.

van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Rethinking Scientific Discovery: Why Hypothesis Hunting Needs AI Agents

Modern science faces a **crisis of complexity**

- **Scale:** Millions of data points \times thousands of variables = **combinatorial explosion**
- **Coordination:** Knowledge, tools, and perspectives scattered across disciplines
- **Human bottleneck:** Limited capacity for exhaustive exploration and synthesis

Scale + Coordination → Beyond Human Reach Alone

The Opportunity: Autonomous, evolving networks of AI agents can

- explore vast hypothesis spaces,
- iteratively refine candidate findings,
- accumulate and share knowledge,

surfacing **testable hypotheses** for human interpretation and experimental validation.

van_der_Schaar
\\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Beyond Today's "AI Scientists": Why We Need True Hypothesis-Hunting Agents

Recent systems like **AI Scientists** and **Co-Scientists** (Lu et al., 2024; Gottweis et al., 2025) represent important progress - can propose hypotheses, design experiments, run analyses, and interpret results

Limitations of Current AI Scientist Paradigm:

- **Predefined Questions** → operate within narrow, human-specified problem scopes
- **Limited Exploration** → insufficient coverage of vast, sparse hypothesis spaces
- **Weak Evaluation** → struggle to assess significance without a fixed question context
- **No Cumulative Knowledge** → focus on isolated outputs, not evolving, layered research programs

Beyond Today's "AI Scientists": Why We Need True Hypothesis-Hunting Agents

What Hypothesis Hunting Requires:

- Exploration – search vast, open-ended hypothesis spaces
- Evaluation – assess heterogeneous, context-dependent discoveries
- Accumulation – refine, layer, and recombine findings into evolving programs
- Evolution – adapt reasoning as knowledge grows

We need agents that don't just answer our questions — they help us find the questions worth asking

van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

How can we unlock Hypothesis Hunting at Scale?

Insight: Scientific progress emerges from networks, not individuals.

To advance systematic discovery, we need networks of autonomous AI agents, not solitary ones.

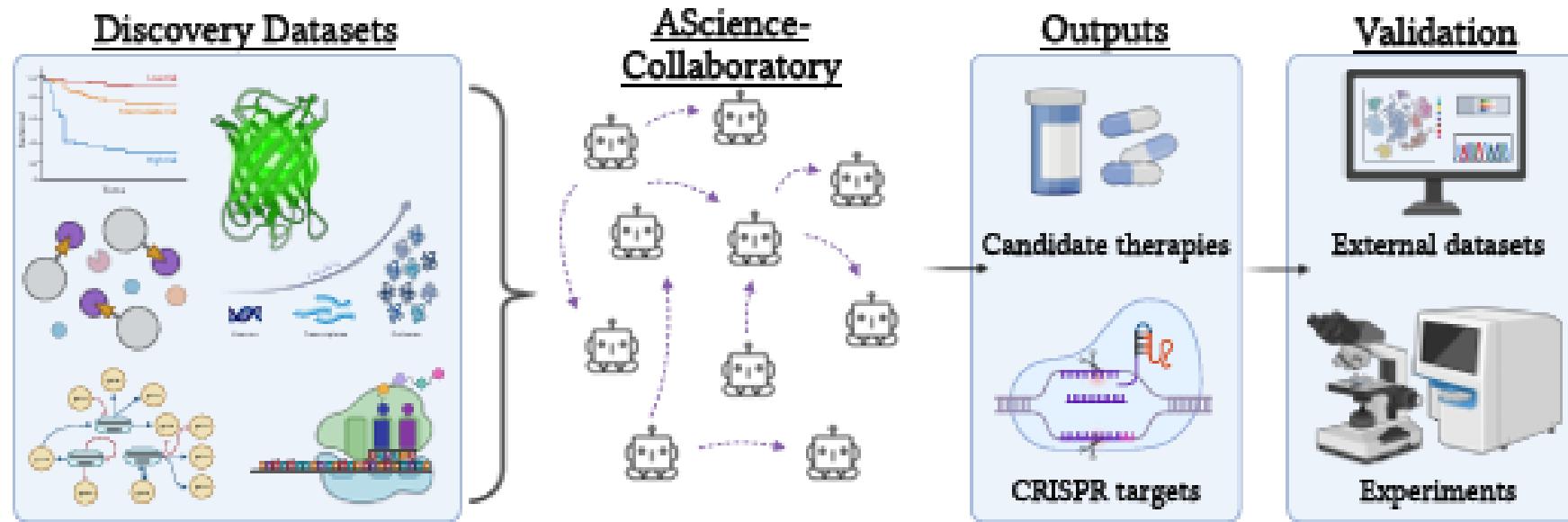
In human science, breakthroughs arise from:

- Diverse perspectives across domains
- Cross-pollination of methods and ideas
- Critical debate and iterative refinement
- Cumulative evidence built across time

Their social dynamics — exploration diversity, critique, knowledge exchange — are crucial to uncover novel directions and accumulate layered understanding.

We aim to replicate and amplify these dynamics in AI agentic systems.

van_der_Schaar
\ LAB


vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Hypothesis Hunting with Evolving Networks of Autonomous Scientific Agents

Large-scale datasets are explored by autonomous networks of research agents that collaborate, peer-review, and refine findings to surface promising directions for human validation

van_der_Scnaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Our Framework: *AScience*

AScience formalizes hypothesis hunting as a continuous, open-ended exploration process, embedding the social dynamics of cumulative scientific progress.

Key elements:

- **Distributed agents exploring diverse directions**
- **Endogenous interaction (sharing, critique, refinement)**
- **Shared evaluation frameworks for coherence**
- **Iterative accumulation of knowledge into evolving research programs**

Social dynamics unlock collective intelligence in scientific discovery.

**van_der_Schaar
\ LAB**

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

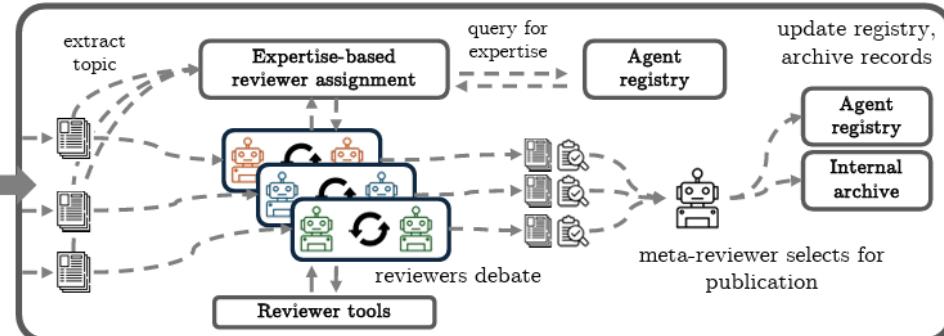
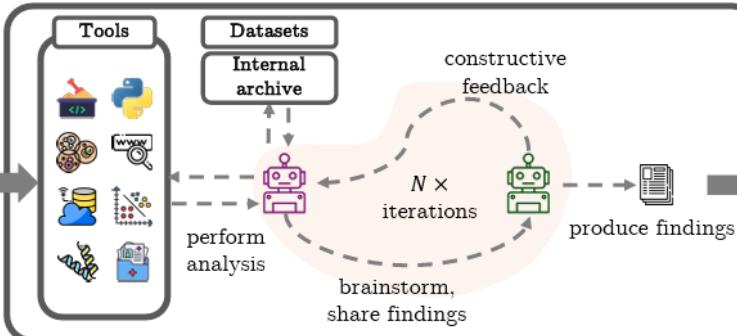
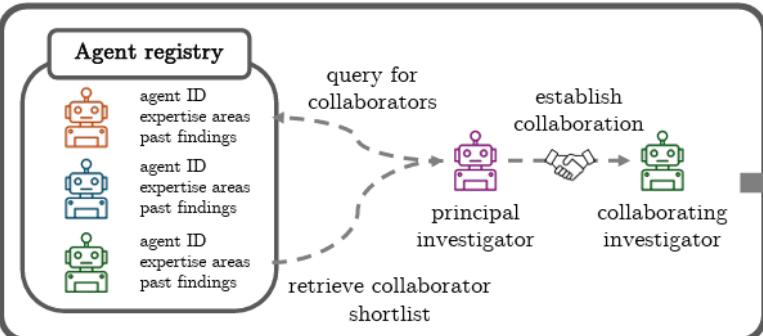
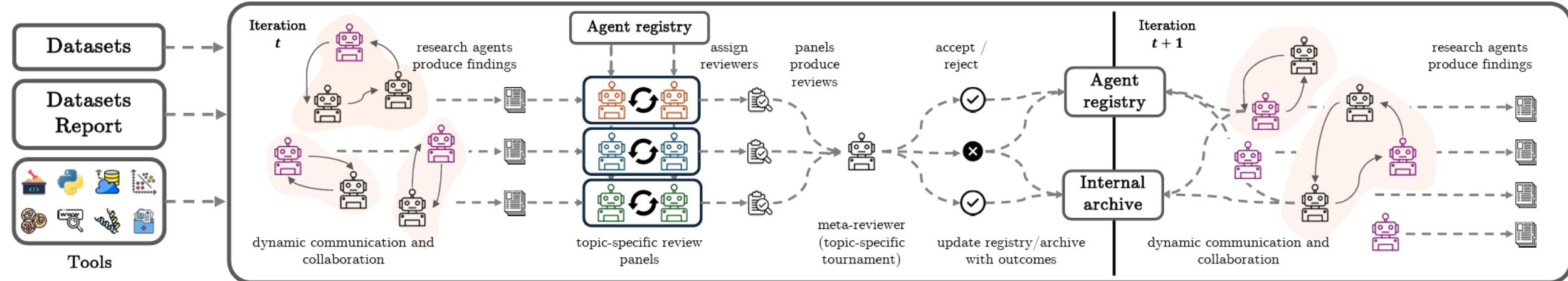
Implementation: *ASCollab*

AScience instantiated as **ASCollab**, a network of heterogeneous LLM-based research agents, that:

- Generate and test hypotheses
- Critique and refine one another's findings
- Share evaluation standards
- Build cumulative knowledge collaboratively

van_der_Schaar
\\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

ASCollab:

Paving the way for scalable, directed & open-ended hypothesis hunting

a. evolving network of scientific agents

b. endogenous research collaborations

c. individual research sessions

d. peer-evaluation of research findings

The Cancer Genome Atlas (TCGA): A Prime Testbed for Autonomous Hypothesis Discovery

TCGA offers an **ideal environment** to evaluate ASCollab's ability to discover novel, meaningful hypotheses from large-scale, real-world biomedical data.

Why TCGA?

1. Real-World Impact

- Understanding **new mechanisms, biomarkers, and therapeutic targets** in cancer remains a major open challenge.
- Hypotheses uncovered here can drive **scientific insight and clinical translation**.

2. Scale & Richness

- **Multi-omics** data across dozens of cancer types.
- Vast, sparsely explored **combinatorial space** of possible associations & mechanistic hypotheses.

3. Reproducibility

- **Open-access** resource ensures findings can be validated and compared by the community.

van_der_Schaar
\\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

ASCollab Demonstrates Promise for Hypothesis Hunting at Scale

Can a ASCollab surface novel, interpretable, and biologically meaningful hypotheses (discoveries) from TCGA data?

Representative Discoveries found via ASCollab:

- Rediscoveries of established cancer drivers → *validation of the system's reliability and grounding in known biology*
- Extensions of pathways → *novel mechanistic insights building on emerging literature*
- Proposals of new candidate therapeutic targets → *previously unexplored associations with survival outcomes*

These preliminary results showcase how **networked scientific agents** can

- navigate high-dimensional biomedical data
- surface interpretable, biologically plausible, and clinically relevant hypotheses
- bridge discovery and translational insight at unprecedented scale

van_der_Schaar
\\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Multi-gene Ferroptosis axis in KIRC (Section D.1)

Agents identified a ferroptosis module involving ACSL4, GPX4, and FTH1 in kidney cancer, a part of which was later independently discovered and published in [Zheng et al. \(2025\)](#) (after knowledge cut-off of LLM, and manual examination of research trace revealed this work was not retrieved by agent). This finding, supported by DepMap essentiality data and prior mixed evidence ([Guo et al., 2015](#); [Huang et al., 2019](#); [Zou et al., 2019](#)), was enabled by the primary agent extending earlier findings by another agent (on SLC7A11/ALOX5) into a broader mechanistic hypothesis.

SLC5A2 and ABCC8 in PAAD (Section D.2)

Agents proposed SLC5A2 (SGLT2) and ABCC8 as therapeutic targets in pancreatic adenocarcinoma, anticipating a July 2025 publication that independently confirmed the SLC5A2–PAAD link ([Xie et al., 2025](#)). This finding, contextualized against prior work emphasizing SGLT1 ([Du et al., 2022](#)) and largely non-oncologic studies of SGLT2 ([Jurczak et al., 2011](#)), illustrates how agent collaboration surfaced a novel target class while situating results within the transporter literature.

BIRC5 validation and PRKD1 extension in KIRC (Section D.3)

Agents independently reproduced the established role of BIRC5 (Survivin) as a diagnostic and prognostic marker in KIRC ([Wang et al., 2021](#)), strengthening confidence by re-deriving results from scratch on TCGA data. Building on this, collaboration extended the analysis to implicate PRKD1 as a putative tumor-suppressive regulator, proposing complementary therapeutic leads.

A fundamentally new paradigm is needed for AI to orient it towards addressing the complexities of the real-world

van_der_Schaar
\ LAB

vanderschaar-lab.com

Genies – The Future of AI Agents

<https://www.vanderschaar-lab.com/genies-the-future-of-ai-agents/>

van_der_Schaar
LAB

vanderschaar-lab.com

PhD Opportunities at the van der Schaar Lab

We are looking for 4 fully funded PhDs to join our lab! Applications now OPEN!

About our PhD programme

- Based at the **University of Cambridge (DAMTP)**
- Work at the cutting edge in a world-leading lab
- Projects with a purpose; work that can change the world
- **32** papers accepted at four largest AI/ML conferences (NeurIPS, ICML, ICLR, AISTATS) in the past year

Join our PhD Open Day

- **Monday 20 October, 9:30am (BST) (virtual)**
- Hear from current PhD students, explore research areas, and ask questions

Apply through our website:

www.vanderschaar-lab.com/join-the-van-der-schaar-lab/

For any queries, please email:

vanderschaarlab@damtp.cam.ac.uk

Scan the QR code
to register for the
PhD Open Day:

van_der_Schaar
\ LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

Let's shape the future together!

Mihaela van der Schaar, FRS

John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine, University of Cambridge
Director, Cambridge Center for AI in Medicine

van_der_Schaar
\\LAB

vanderschaar-lab.com

UNIVERSITY OF
CAMBRIDGE

mv472@cam.ac.uk

[@MihaelaVDS](https://twitter.com/MihaelaVDS)

[linkedin.com/in/
mihaela-van-der-schaar/](https://linkedin.com/in/mihaela-van-der-schaar/)