

My Favourite Open Problem in Database Theory

(and a few other things)

Piotr Ostropolski-Nalewaja

October 15, 2025

Institute of Computer Science, University of Wrocław

Part One: the Few Other Things

Overview

Computer Science

Computer Science

I like to think that working on

Computer Science

I like to think that working on

(theoretical) **Computer Science**

I like to think that working on

(theoretical) **Computer Science**

splits into:

I like to think that working on

(theoretical) **Computer Science**

splits into:

Theory Building

I like to think that working on

(theoretical) **Computer Science**

splits into:

Theory Building

Problem Solving

I like to think that working on

(theoretical) **Computer Science**

splits into:

Theory Building
(finding creative explanations)

Problem Solving

I like to think that working on

Computer Science

(theoretical)

splits into:

Theory Building

(finding creative explanations)

Problem Solving

(finding interesting solutions)

Decision Problems

Entscheidungsproblem

Entscheidungsproblem

David Hilbert

the father of mathematical logic

Entscheidungsproblem

David Hilbert

the father of mathematical logic

David Hilbert

the father of mathematical logic

Decision problem:

Does there exist an algorithm that
considers an inputted statement and
answers "yes" or "no" according to
whether it is universally valid?

David Hilbert

the father of mathematical logic

No

Decision problem:

Does there exist an algorithm that
considers an inputted statement and
answers "yes" or "no" according to
whether it is universally valid?

Entscheidungsproblem

David Hilbert

the father of mathematical logic

Alan Turing

the father of computer science

No

Decision problem:

Does there exist an algorithm that
considers an inputted statement and
answers "yes" or "no" according to
whether it is universally valid?

Entscheidungsproblem

David Hilbert

the father of mathematical logic

Decision problem:

Does there exist an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid?

Alan Turing

the father of computer science

No

Halting problem:

Can one write a program deciding whether the input's program execution halts?

Programming in strange languages

Hilbert's 10th problem

Hilbert's 10th problem

Can one write a program deciding:

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0$$

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or}$$

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or} \quad xyz + 5x^7 - 2y^2 + 3 = 0$$

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or} \quad xyz + 5x^7 - 2y^2 + 3 = 0 \quad \text{or} \quad \dots$$

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or} \quad xyz + 5x^7 - 2y^2 + 3 = 0 \quad \text{or} \quad \dots$$

whether the equation has an integer solution?

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or} \quad xyz + 5x^7 - 2y^2 + 3 = 0 \quad \text{or} \quad \dots$$

whether the equation has an integer solution?

Also undecidable!

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or} \quad xyz + 5x^7 - 2y^2 + 3 = 0 \quad \text{or} \quad \dots$$

whether the equation has an integer solution?

Also undecidable! Why?

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or} \quad xyz + 5x^7 - 2y^2 + 3 = 0 \quad \text{or} \quad \dots$$

whether the equation has an integer solution?

Also undecidable! Why? Reductions!

Hilbert's 10th problem

Can one write a program deciding:

Given a polynomial equation with integer coefficients

$$3x^2 - 4xy + 12y + 2 = 0 \quad \text{or} \quad xyz + 5x^7 - 2y^2 + 3 = 0 \quad \text{or} \quad \dots$$

whether the equation has an integer solution?

Also undecidable! Why? Reductions!

If we could have such a program, then we would be able to make an algorithm deciding halting problem!

Part Two: The Problem

My favourite database theory problem

My favourite database theory problem

Query Containment Problem

My favourite database theory problem

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

My favourite database theory problem

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})?$$

My favourite database theory problem

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})?$$

Can one *decide* query containment problem?

My favourite database theory problem

Query Containment Problem

Given two queries Q_s and Q_b does it hold for every database \mathcal{D} :

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})?$$

Can one *decide* query containment problem?

What kind of query? What is a database in this context?

Queries

Conjunctive Queries (by example)

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

$$M(x, z) = \exists y \text{ Mother}(x, y) \wedge \text{Mother}(y, z)$$

Queries

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

$$M(x, z) = \exists y \text{ Mother}(x, y) \wedge \text{Mother}(y, z)$$

$$V = \exists x, y, z E(x, y) \wedge E(x, z)$$

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

$$M(x, z) = \exists y \text{ Mother}(x, y) \wedge \text{Mother}(y, z)$$

$$V = \exists x, y, z E(x, y) \wedge E(x, z)$$

CQs are the select-join-project fragment of SQL

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

$$M(x, z) = \exists y \text{ Mother}(x, y) \wedge \text{Mother}(y, z)$$

$$V = \exists x, y, z E(x, y) \wedge E(x, z)$$

CQs are the select-join-project fragment of SQL

Unions of CQs

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

$$M(x, z) = \exists y \text{ Mother}(x, y) \wedge \text{Mother}(y, z)$$

$$\vee = \exists x, y, z E(x, y) \wedge E(x, z)$$

CQs are the select-join-project fragment of SQL

Unions of CQs

$$Q(x) = \text{Black}(x) \vee \text{White}(x)$$

Queries

Conjunctive Queries (by example)

$$C_3(x, y, z) = E(x, y) \wedge E(y, z) \wedge E(z, x)$$

$$M(x, z) = \exists y \text{ Mother}(x, y) \wedge \text{Mother}(y, z)$$

$$V = \exists x, y, z E(x, y) \wedge E(x, z)$$

CQs are the select-join-project fragment of SQL

Unions of CQs

$$Q(x) = \text{Black}(x) \vee \text{White}(x)$$

$$P = V \vee \exists x, z M(x, z)$$

Boolean queries and homomorphisms

$$\forall ee = \exists x, y, z E(x, y) \wedge E(x, z)$$

Boolean queries and homomorphisms

$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z) \quad \text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$

Boolean queries and homomorphisms

$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z) \quad \text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$

Boolean queries and homomorphisms

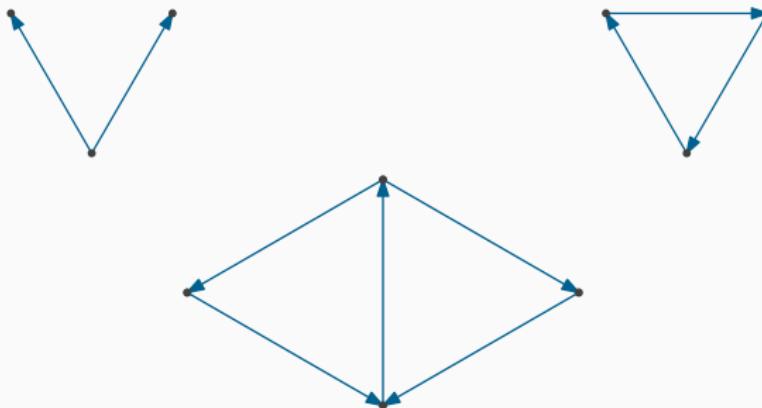
$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z)$$

$$\text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$

Boolean queries and homomorphisms

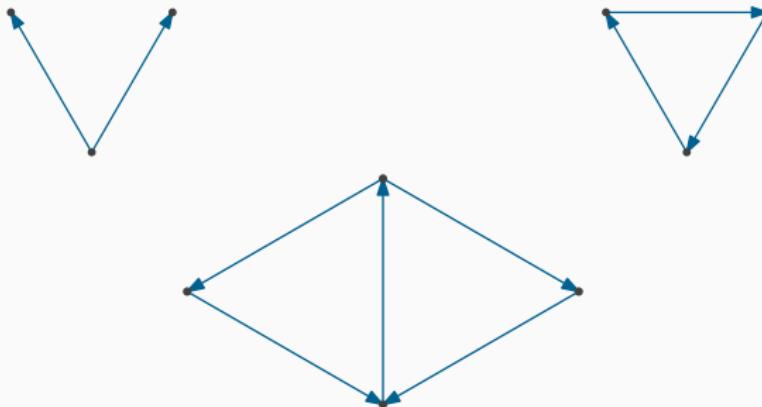
$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z)$$

$$\text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$



Boolean queries and homomorphisms

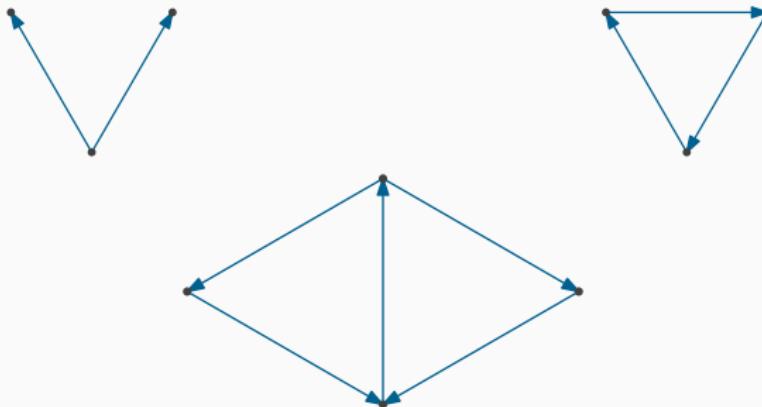
$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z) \quad \text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$



set semantics	
bag semantics	

Boolean queries and homomorphisms

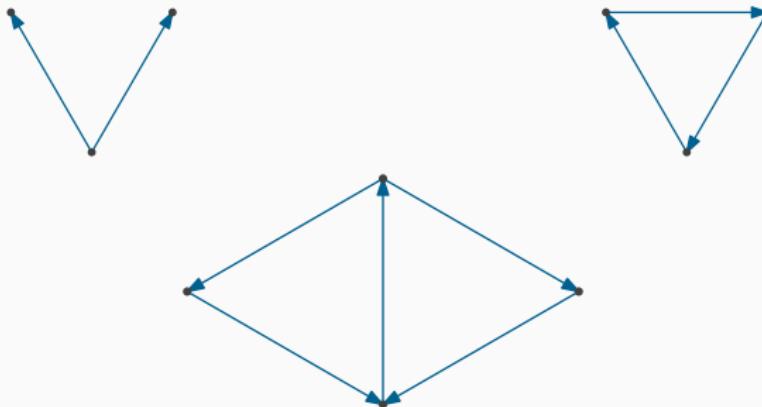
$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z) \quad \text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$



	$\text{Vee}(\mathcal{D})$	$\text{Tri}(\mathcal{D})$
set semantics		
bag semantics		

Boolean queries and homomorphisms

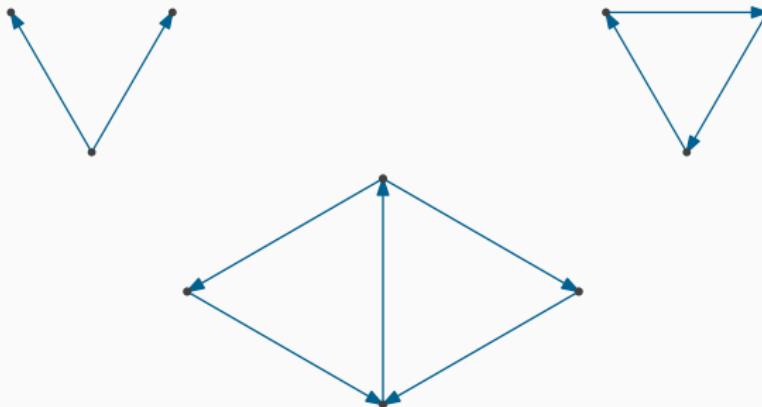
$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z) \quad \text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$



$Q(\mathcal{D})$	$\text{Vee}(\mathcal{D})$	$\text{Tri}(\mathcal{D})$
set semantics	yes	yes
bag semantics		

Boolean queries and homomorphisms

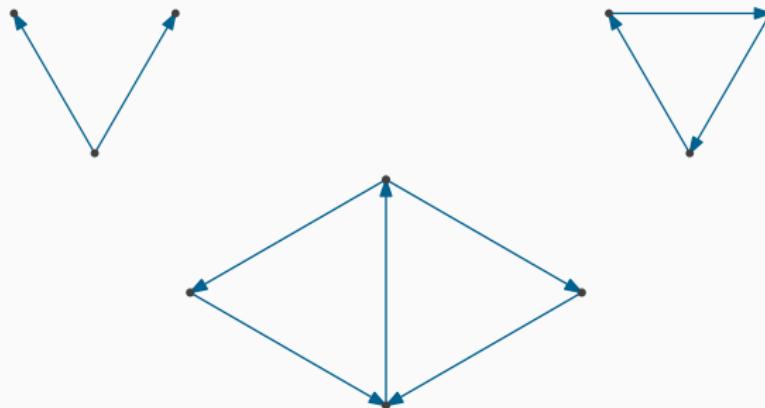
$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z) \quad \text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$



$Q(\mathcal{D})$	$\text{Vee}(\mathcal{D})$	$\text{Tri}(\mathcal{D})$
set semantics	yes	yes
bag semantics	7	

Boolean queries and homomorphisms

$$\text{Vee} = \exists x, y, z \ E(x, y) \wedge E(x, z) \quad \text{Tri} = \exists x, y, z \ E(x, y) \wedge E(y, z) \wedge E(z, x)$$



$Q(\mathcal{D})$	$\text{Vee}(\mathcal{D})$	$\text{Tri}(\mathcal{D})$
set semantics	yes	yes
bag semantics	7	6

Status of the problem

Set Semantics

Status of the problem

Set Semantics

CQ Containment:

Status of the problem

Set Semantics

CQ Containment: Closed and **decidable**

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment:

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and **decidable**

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and **decidable**

(Same but generalized criterion)

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and **decidable**

(Same but generalized criterion)

Bag Semantics

Status of the problem

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and **decidable**

(Same but generalized criterion)

Bag Semantics

CQ Containment:

Status of the problem

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and **decidable**

(Same but generalized criterion)

Bag Semantics

CQ Containment: Still **open** after 30 years!

Status of the problem

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and **decidable**

(Same but generalized criterion)

Bag Semantics

CQ Containment: Still **open** after 30 years!

UCQ Containment:

Set Semantics

CQ Containment: Closed and **decidable**

(Existence of homomorphism from one query to the other)

UCQ Containment: Closed and **decidable**

(Same but generalized criterion)

Bag Semantics

CQ Containment: Still **open** after 30 years!

UCQ Containment: Closed and **undecidable**

UCQ containment under bag semantics

UCQ containment under bag semantics

$$Q_s = \exists z \ \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \ \vee \ \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

$$\mathcal{D}_2 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$$\mathcal{D}_2$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1		
\mathcal{D}_2		

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$$\mathcal{D}_2$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$\textcolor{blue}{3}^2 + \textcolor{red}{1}^3$	
\mathcal{D}_2		

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$$\mathcal{D}_2$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$\textcolor{blue}{3}^2 + \textcolor{red}{1}^3$	$2 \cdot \textcolor{blue}{3} \cdot \textcolor{red}{1}$
\mathcal{D}_2		

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$$\mathcal{D}_2$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$\textcolor{blue}{3}^2 + \textcolor{red}{1}^3$	$2 \cdot \textcolor{blue}{3} \cdot \textcolor{red}{1}$
\mathcal{D}_2	$\textcolor{blue}{2}^2 + \textcolor{red}{2}^3$	

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$$\mathcal{D}_2$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$\textcolor{blue}{3}^2 + \textcolor{red}{1}^3$	$2 \cdot \textcolor{blue}{3} \cdot \textcolor{red}{1}$
\mathcal{D}_2	$\textcolor{blue}{2}^2 + \textcolor{red}{2}^3$	$2 \cdot \textcolor{blue}{2} \cdot \textcolor{red}{2}$

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$$\mathcal{D}_2$$

$$\begin{array}{cccc} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{array}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$\textcolor{blue}{3}^2 + \textcolor{red}{1}^3$	$2 \cdot \textcolor{blue}{3} \cdot \textcolor{red}{1}$
\mathcal{D}_2	$\textcolor{blue}{2}^2 + \textcolor{red}{2}^3$	$2 \cdot \textcolor{blue}{2} \cdot \textcolor{red}{2}$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D})$$

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

$$\mathcal{D}_2 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$\textcolor{blue}{3}^2 + \textcolor{red}{1}^3$	$2 \cdot \textcolor{blue}{3} \cdot \textcolor{red}{1}$
\mathcal{D}_2	$\textcolor{blue}{2}^2 + \textcolor{red}{2}^3$	$2 \cdot \textcolor{blue}{2} \cdot \textcolor{red}{2}$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D}) \iff$$

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

$$\mathcal{D}_2 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$\textcolor{blue}{3}^2 + \textcolor{red}{1}^3$	$2 \cdot \textcolor{blue}{3} \cdot \textcolor{red}{1}$
\mathcal{D}_2	$\textcolor{blue}{2}^2 + \textcolor{red}{2}^3$	$2 \cdot \textcolor{blue}{2} \cdot \textcolor{red}{2}$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D}) \iff 2\textcolor{blue}{x}\textcolor{red}{y} \leq \textcolor{blue}{x}^2 + \textcolor{red}{y}^3$$

UCQ containment under bag semantics

$$Q_s = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{blue}{X}(z) \vee \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z) \wedge \textcolor{red}{Y}(z)$$

$$Q_b = \exists z \text{ } \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z) \vee \textcolor{blue}{X}(z) \wedge \textcolor{red}{Y}(z)$$

$$\mathcal{D}_1 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

$$\mathcal{D}_2 \quad \begin{matrix} \textcolor{blue}{X} & \textcolor{blue}{X} & \textcolor{red}{Y} & \textcolor{red}{Y} \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$$

$Q(\mathcal{D})$	Q_b	Q_s
\mathcal{D}_1	$3^2 + 1^3$	$2 \cdot 3 \cdot 1$
\mathcal{D}_2	$2^2 + 2^3$	$2 \cdot 2 \cdot 2$

$$Q_s(\mathcal{D}) \subseteq Q_b(\mathcal{D}) \iff 2\textcolor{blue}{x}\textcolor{red}{y} \leq \textcolor{blue}{x}^2 + \textcolor{red}{y}^3$$

Reduction from a variant of Hilbert's 10th problem!

My contribution

My contribution

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

My contribution

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input:

My contribution

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

My contribution

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question:

My contribution

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question: Does the following hold for every database \mathcal{D} ?

My contribution

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question: Does the following hold for every database \mathcal{D} ?

$$(1 + \varepsilon) \cdot Q_s(\mathcal{D}) \leq Q_b(\mathcal{D})$$

My contribution

Theorem

For each $\varepsilon > 0$ the following problem is undecidable:

Input: Two Boolean CQs Q_s and Q_b

Question: Does the following hold for every database \mathcal{D} ?

$$(1 + \varepsilon) \cdot Q_s(\mathcal{D}) \leq Q_b(\mathcal{D})$$

Bag Semantics Query Containment: The CQ vs. UCQ Case and Other Stories
Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Principles of Database System (PODS 2026)

Thank you!