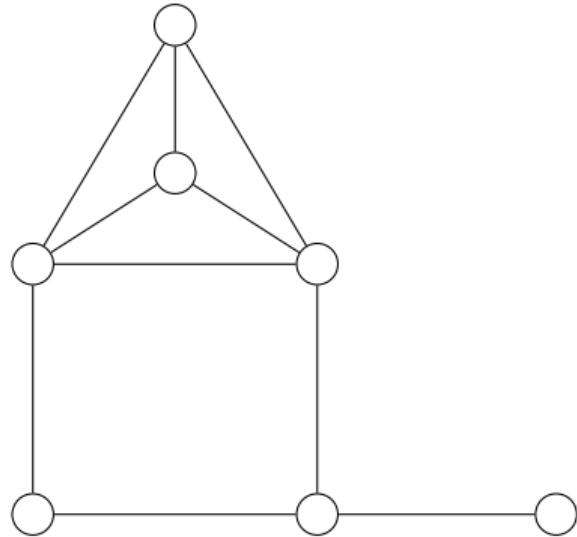


# Algorithmics of Dynamic Well-Structured Graphs

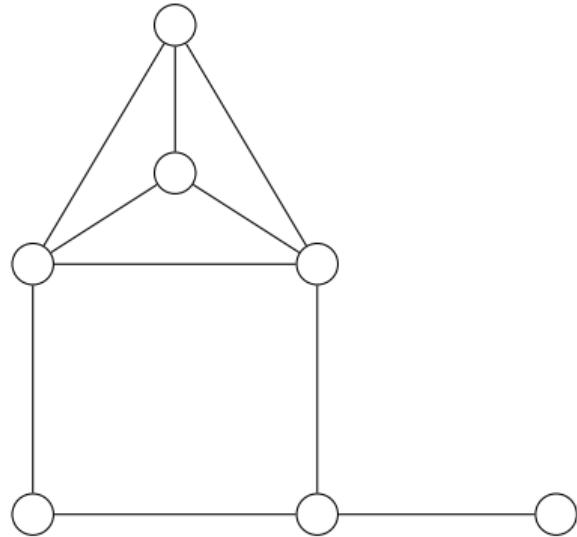
Marek Sokołowski

16 October 2025

# Graphs & Graph problems

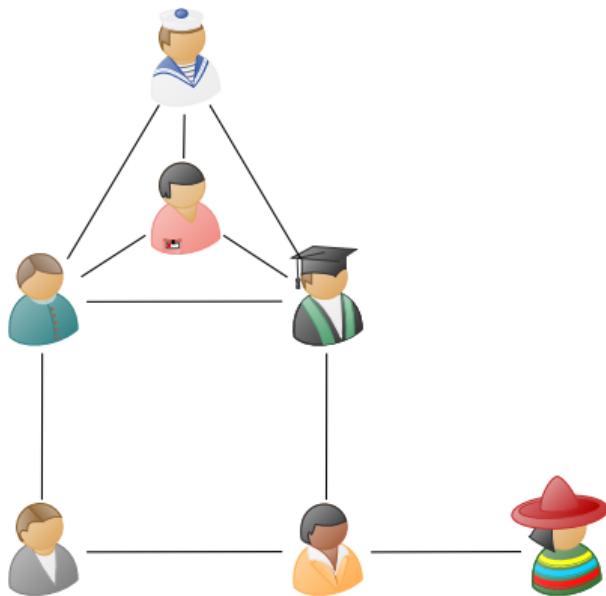


# Graphs & Graph problems



$n$  vertices,  $m$  edges

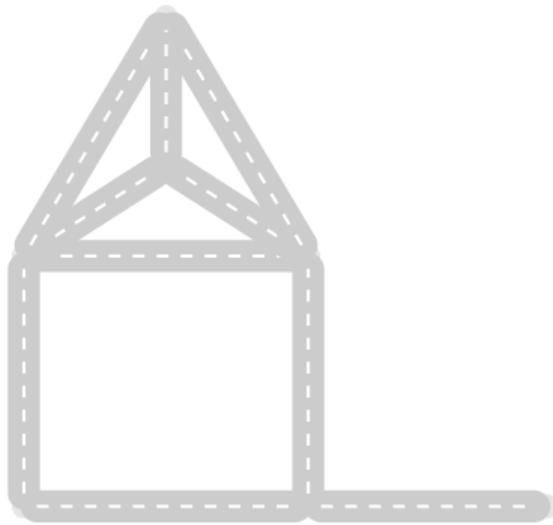
# Graphs & Graph problems



$n$  vertices,  $m$  edges

people      relationships

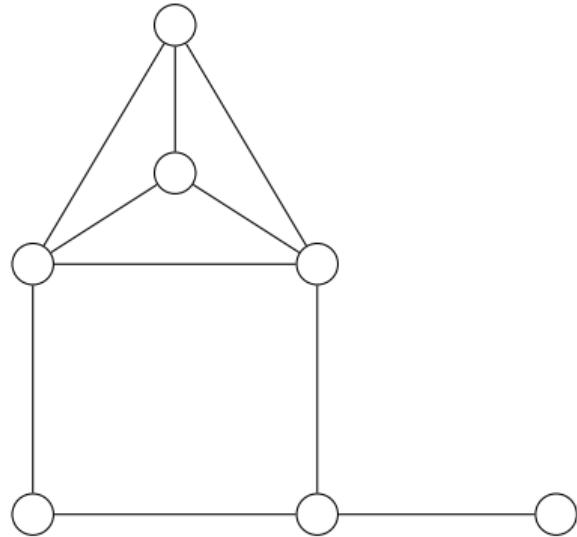
# Graphs & Graph problems



$n$  vertices,  $m$  edges

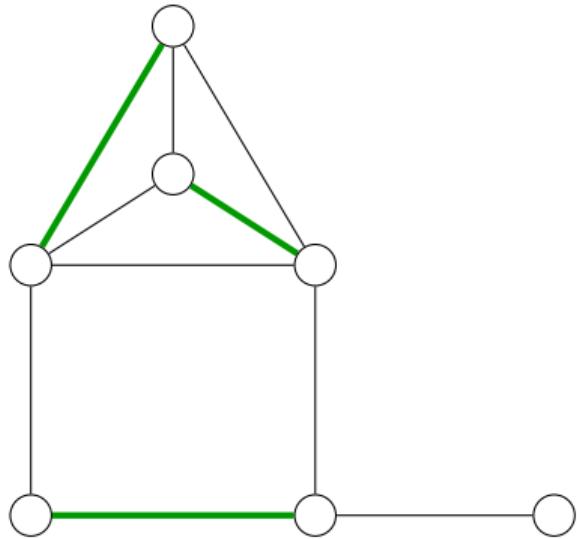
intersections    streets

# Graphs & Graph problems



$n$  vertices,  $m$  edges

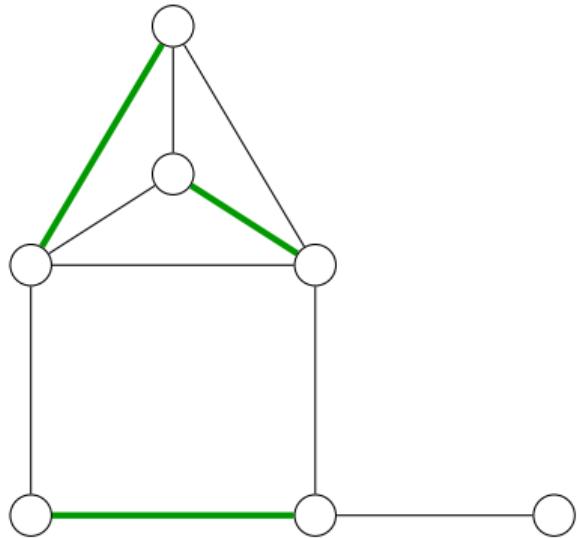
## Graphs & Graph problems



$n$  vertices,  $m$  edges

## MAXIMUM MATCHING

# Graphs & Graph problems



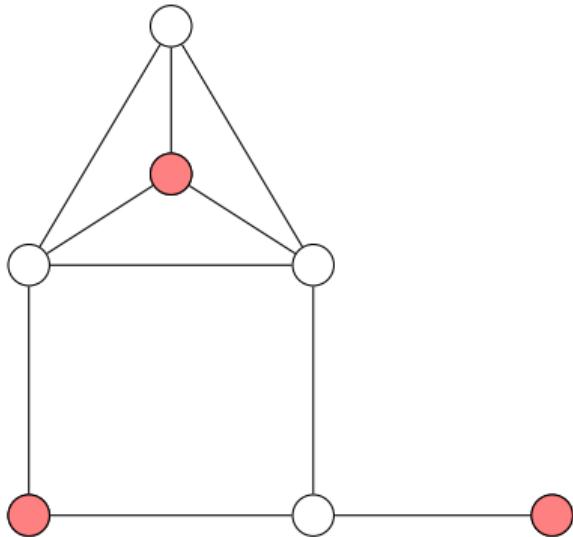
$n$  vertices,  $m$  edges

MAXIMUM MATCHING

Easy!

[Edmonds '61]

# Graphs & Graph problems



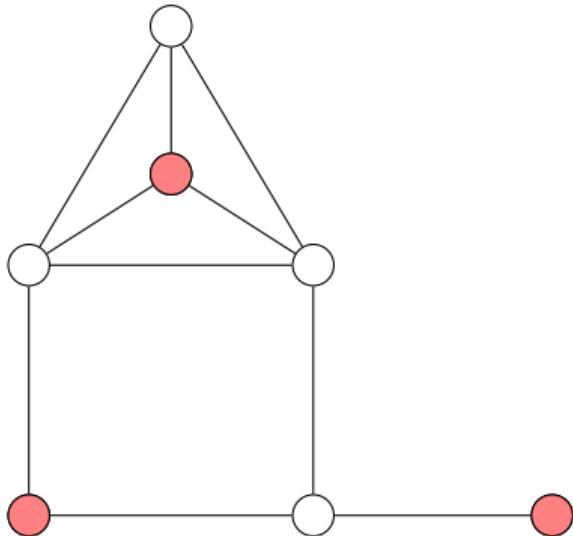
$n$  vertices,  $m$  edges

MAXIMUM MATCHING

**Easy!**  
[Edmonds '61]

MAXIMUM INDEPENDENT SET

# Graphs & Graph problems



$n$  vertices,  $m$  edges

MAXIMUM MATCHING

Easy!

[Edmonds '61]

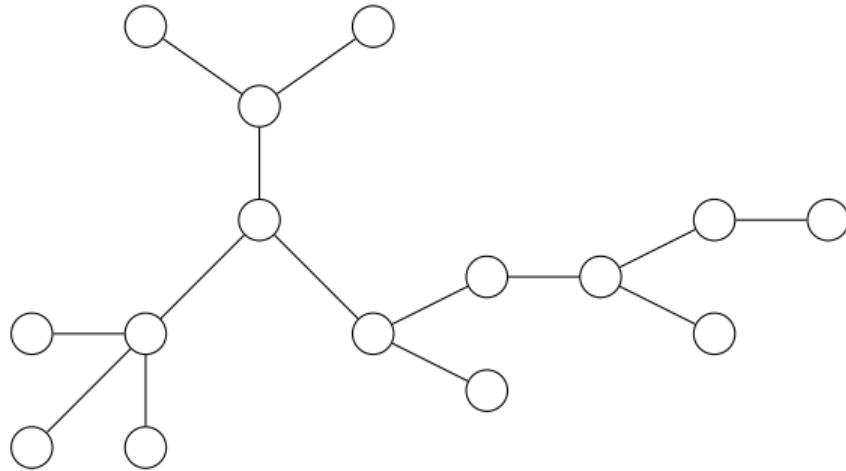
MAXIMUM INDEPENDENT SET

NP-hard!

[Cook '71, Karp '72, Levin '73]

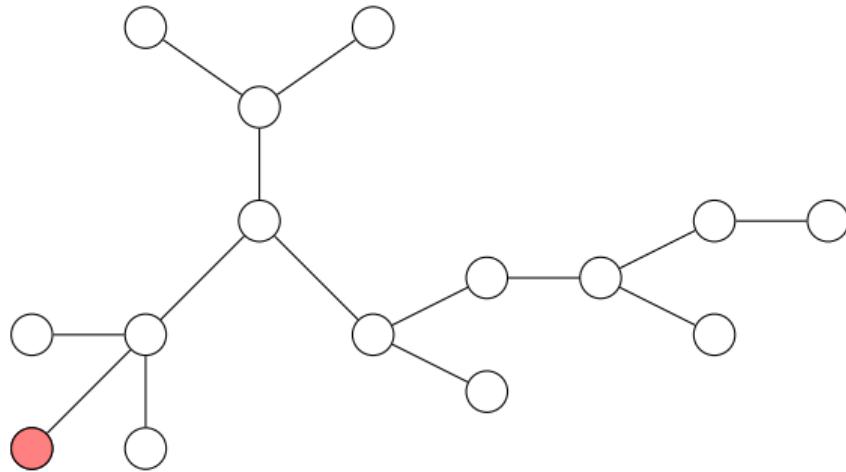
# Trees

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



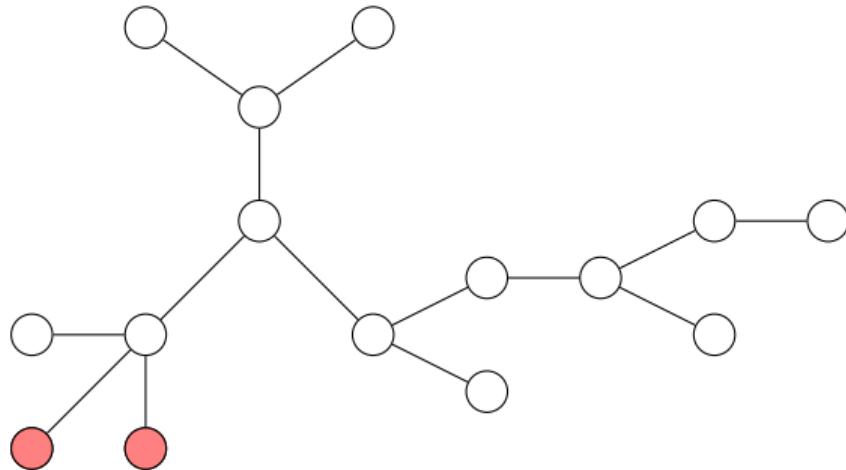
# Trees

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



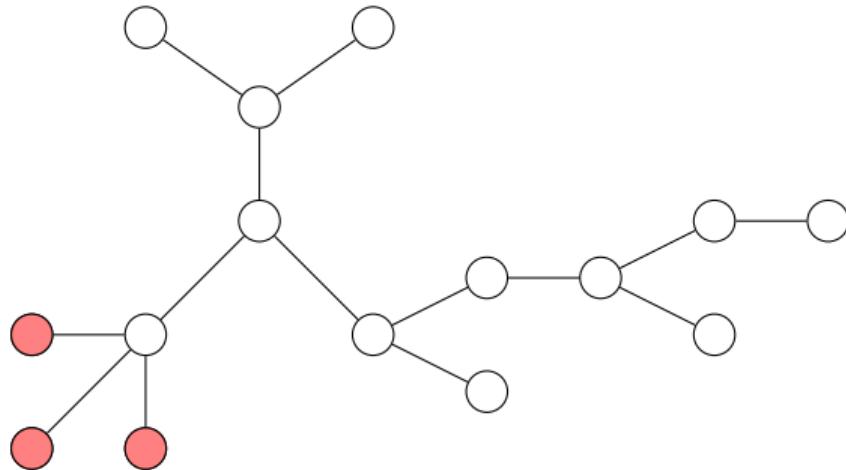
# Trees

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



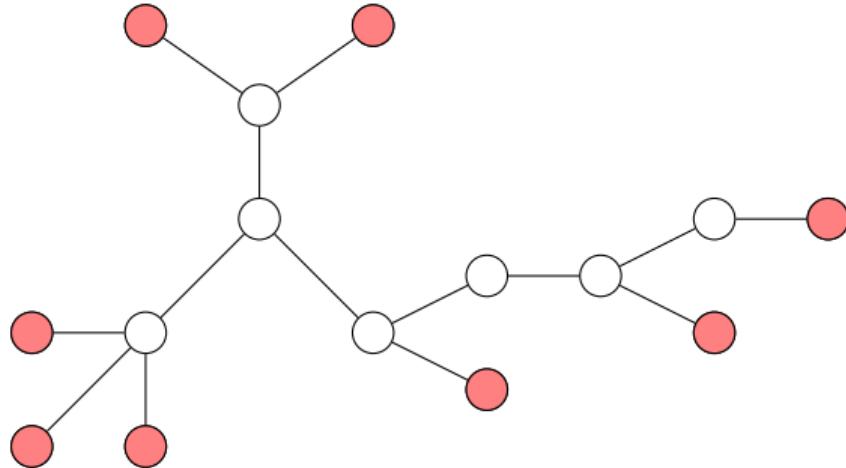
# Trees

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



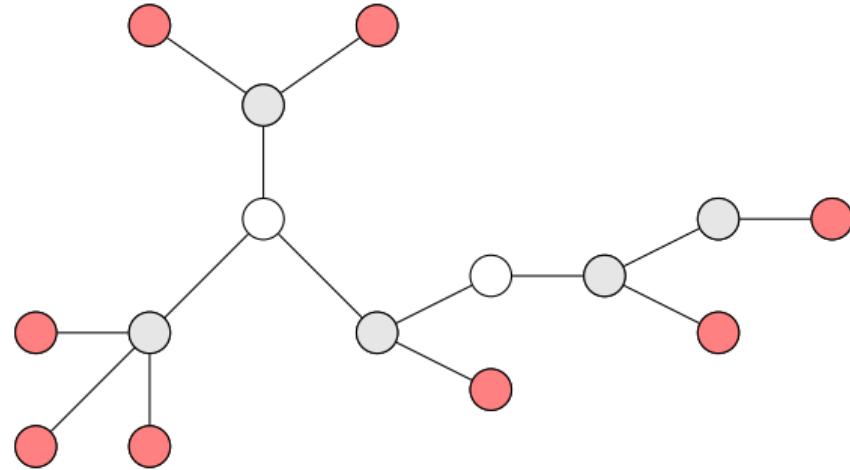
# Trees

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



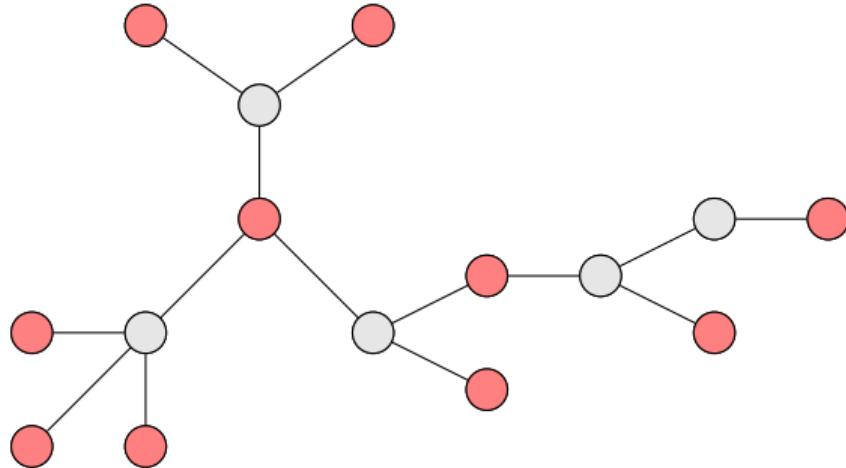
## Trees

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



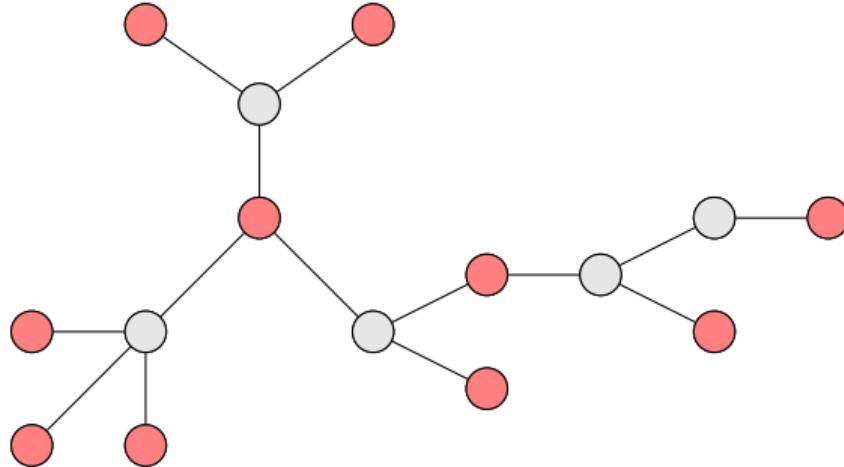
# Trees

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



# Trees

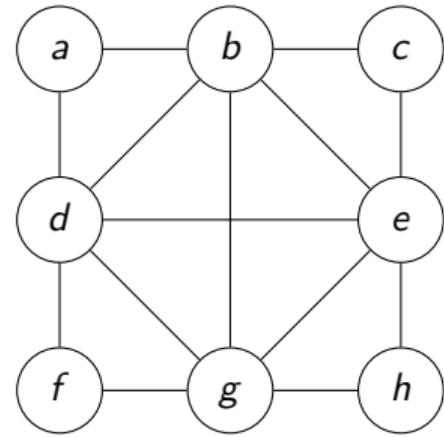
MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on **trees**!



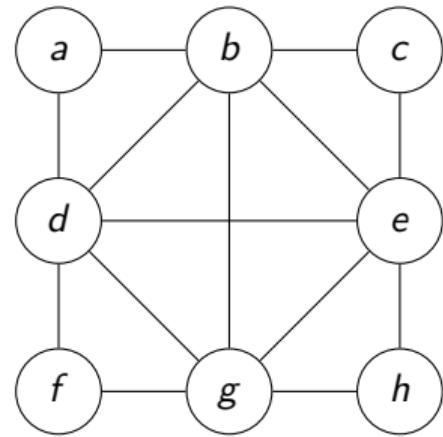
## Question

Maybe some hard problems can be solved efficiently on **more general tree-like** graphs?

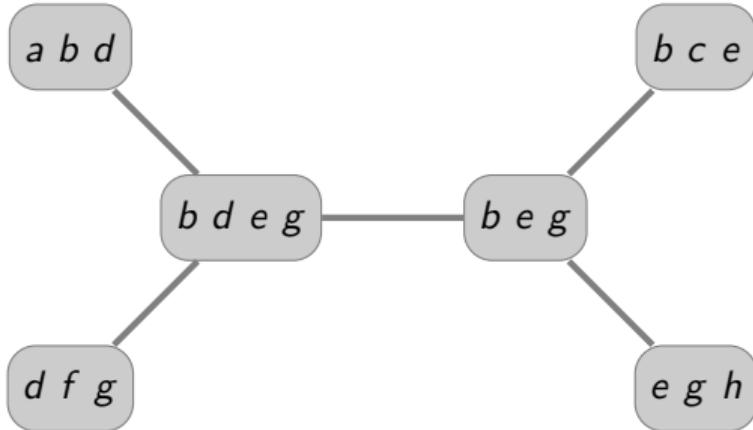
# Treewidth



# Treewidth

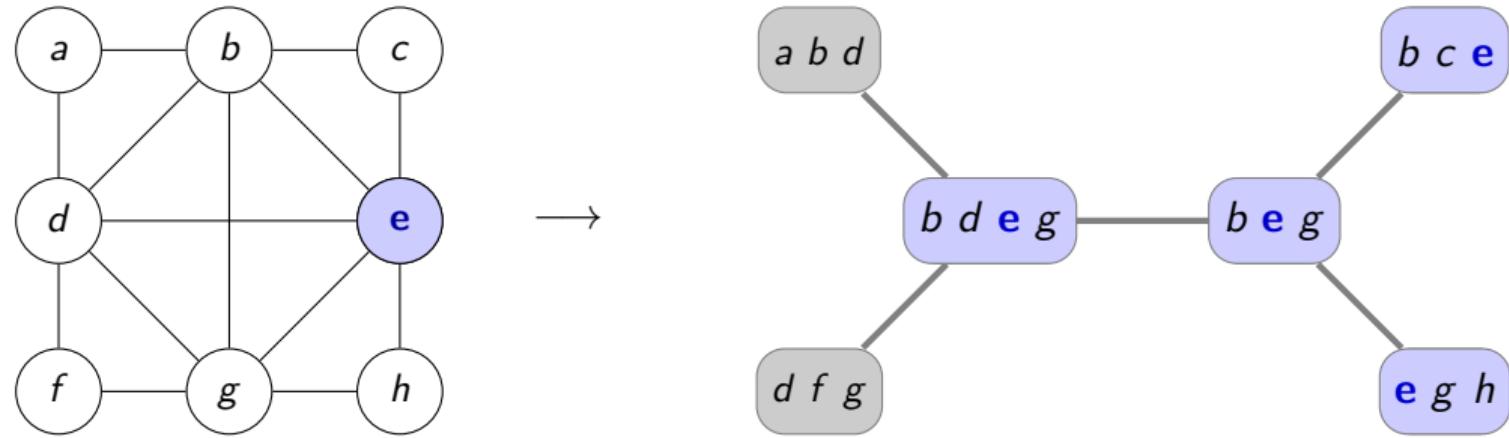


→



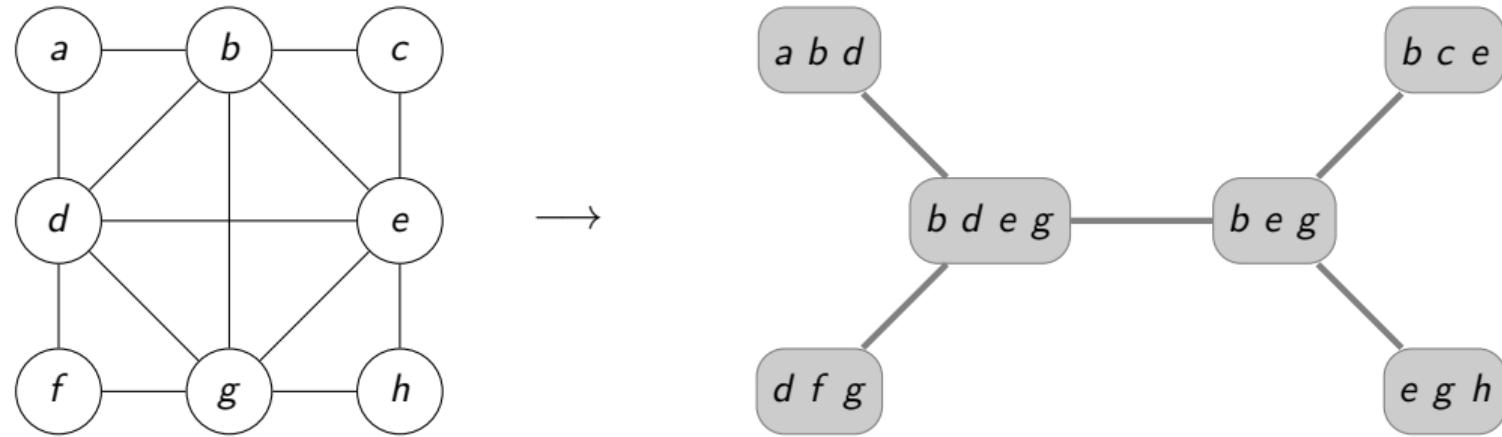
**tree decomposition**

# Treewidth



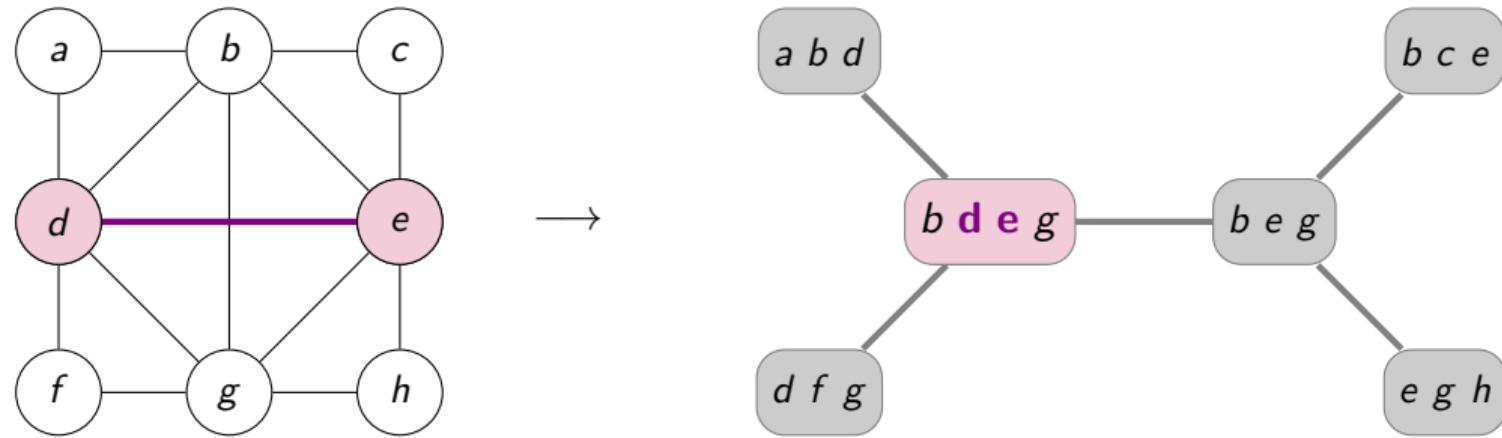
- Each **vertex** in a non-empty connected subgraph of the decomposition

# Treewidth



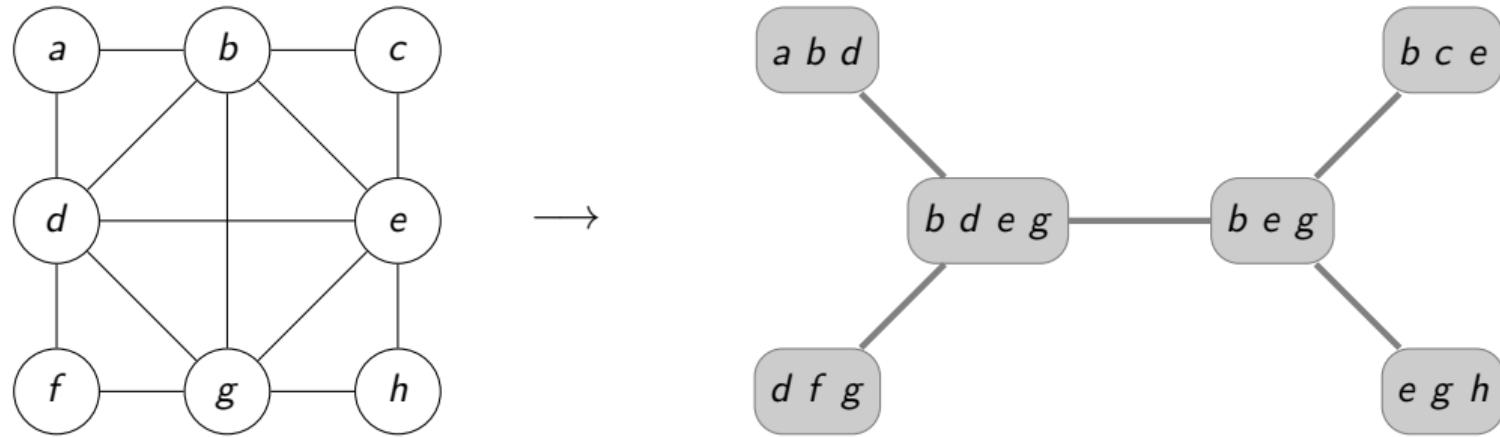
- Each **vertex** in a non-empty connected subgraph of the decomposition

# Treewidth



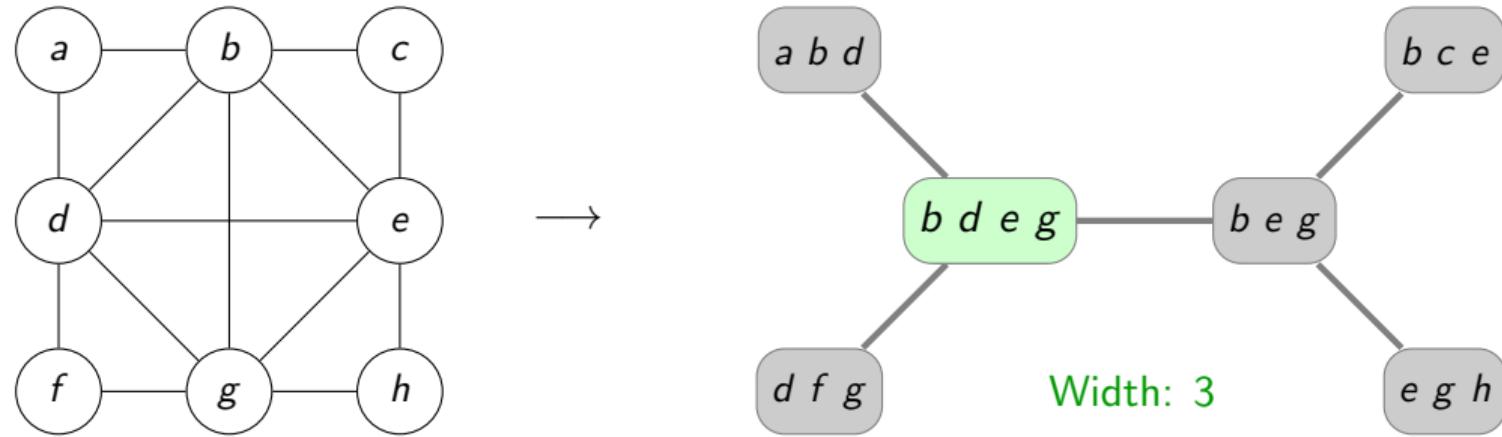
- Each **vertex** in a non-empty connected subgraph of the decomposition
- Each **edge**  $uv \implies$  both  $u$  and  $v$  in some common bag of the decomposition

# Treewidth



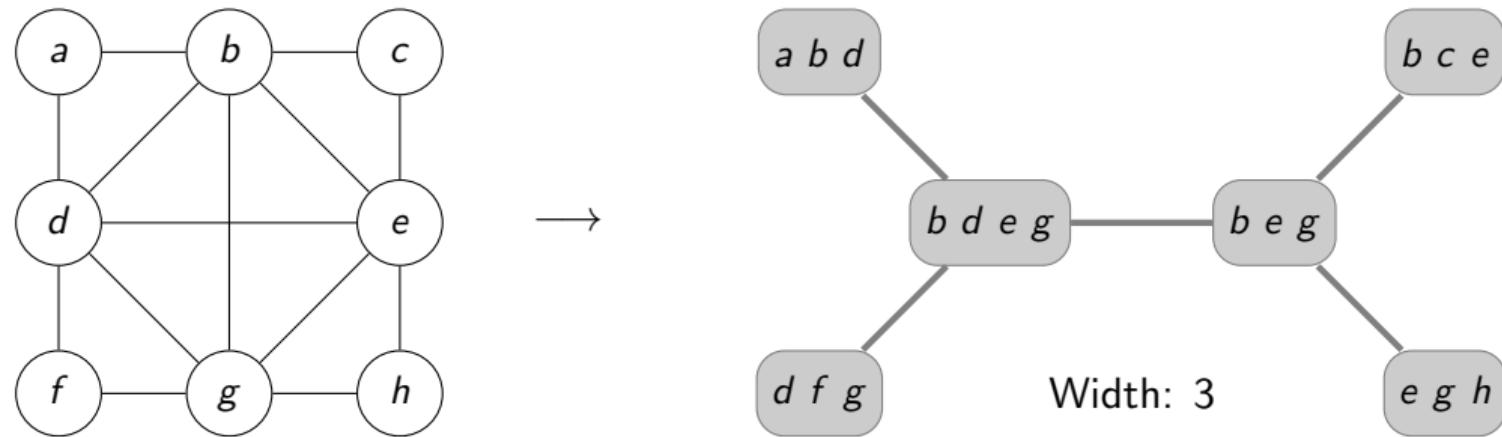
- Each **vertex** in a non-empty connected subgraph of the decomposition
- Each **edge**  $uv \implies$  both  $u$  and  $v$  in some common bag of the decomposition

# Treewidth



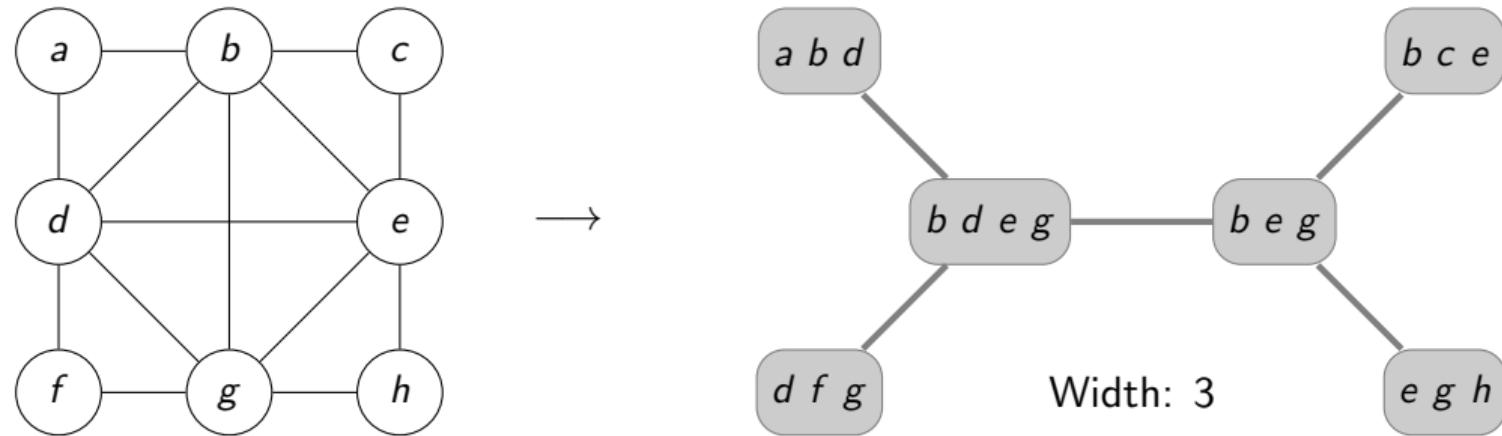
- Each **vertex** in a non-empty connected subgraph of the decomposition
- Each **edge**  $uv \implies$  both  $u$  and  $v$  in some common bag of the decomposition
- **Width:** maximum bag size, minus 1

# Treewidth



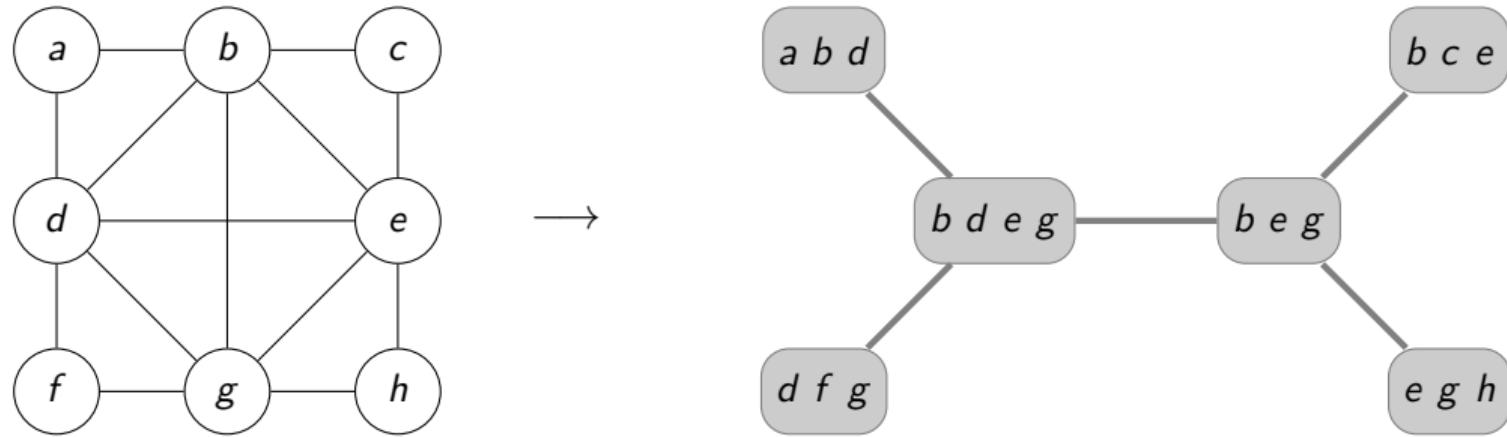
- Each **vertex** in a non-empty connected subgraph of the decomposition
- Each **edge**  $uv \implies$  both  $u$  and  $v$  in some common bag of the decomposition
- **Width:** maximum bag size, minus 1

# Treewidth



- Each **vertex** in a non-empty connected subgraph of the decomposition
- Each **edge**  $uv \implies$  both  $u$  and  $v$  in some common bag of the decomposition
- **Width:** maximum bag size, minus 1
- **Treewidth:** minimum possible width of a tree decomposition

# Treewidth



Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

# Treewidth

Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

**Problem:** Usually we don't have a tree decomposition of a graph beforehand.

# Treewidth

Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

**Problem:** Usually we don't have a tree decomposition of a graph beforehand.

## Tree decomposition algorithms

**Given** an  $n$ -vertex graph  $G$  of treewidth  $w$ , we can **find** a tree decomposition of  $G$ ...

# Treewidth

Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

**Problem:** Usually we don't have a tree decomposition of a graph beforehand.

## Tree decomposition algorithms

**Given** an  $n$ -vertex graph  $G$  of treewidth  $w$ , we can **find** a tree decomposition of  $G$ ...

|                          | Width guarantee | Time                           |
|--------------------------|-----------------|--------------------------------|
| [Robertson, Seymour '86] | $4w + 3$        | $2^{\mathcal{O}(w)} \cdot n^2$ |

# Treewidth

Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

**Problem:** Usually we don't have a tree decomposition of a graph beforehand.

## Tree decomposition algorithms

**Given** an  $n$ -vertex graph  $G$  of treewidth  $w$ , we can **find** a tree decomposition of  $G$ ...

|                          | Width guarantee | Time                           |
|--------------------------|-----------------|--------------------------------|
| [Robertson, Seymour '86] | $4w + 3$        | $2^{\mathcal{O}(w)} \cdot n^2$ |
| [Bodlaender '96]         | $w$             | $2^{\mathcal{O}(w^3)} \cdot n$ |

# Treewidth

Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

**Problem:** Usually we don't have a tree decomposition of a graph beforehand.

## Tree decomposition algorithms

**Given** an  $n$ -vertex graph  $G$  of treewidth  $w$ , we can **find** a tree decomposition of  $G$ ...

|                          | Width guarantee | Time                           |
|--------------------------|-----------------|--------------------------------|
| [Robertson, Seymour '86] | $4w + 3$        | $2^{\mathcal{O}(w)} \cdot n^2$ |
| [Bodlaender '96]         | $w$             | $2^{\mathcal{O}(w^3)} \cdot n$ |
| [Bodlaender et al. '16]  | $5w + 4$        | $2^{\mathcal{O}(w)} \cdot n$   |

# Treewidth

Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

**Problem:** Usually we don't have a tree decomposition of a graph beforehand.

## Tree decomposition algorithms

**Given** an  $n$ -vertex graph  $G$  of treewidth  $w$ , we can **find** a tree decomposition of  $G$ ...

|                          | Width guarantee | Time                           |
|--------------------------|-----------------|--------------------------------|
| [Robertson, Seymour '86] | $4w + 3$        | $2^{\mathcal{O}(w)} \cdot n^2$ |
| [Bodlaender '96]         | $w$             | $2^{\mathcal{O}(w^3)} \cdot n$ |
| [Bodlaender et al. '16]  | $5w + 4$        | $2^{\mathcal{O}(w)} \cdot n$   |
| [Korhonen '21]           | $2w + 1$        | $2^{\mathcal{O}(w)} \cdot n$   |

# Treewidth

Treewidth is great!

**Given:**  $n$ -vertex graph  $G$  and its tree decomposition of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{\mathcal{O}(w)} \cdot n$

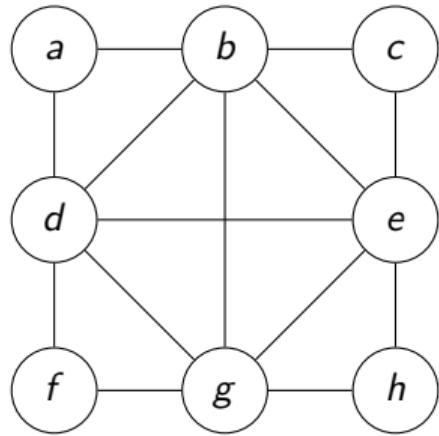
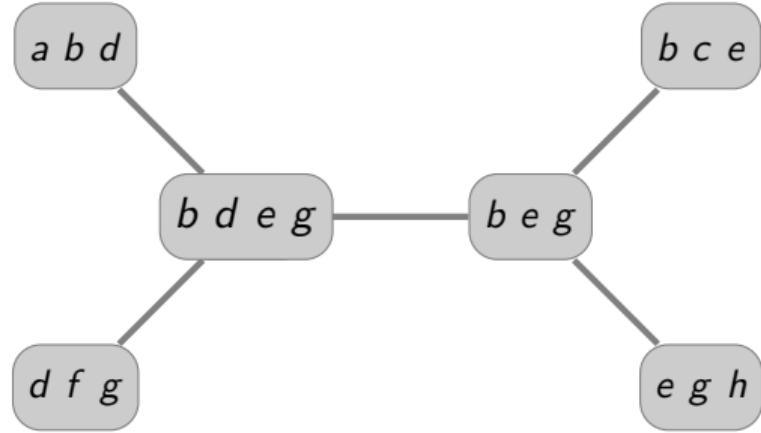
**Problem:** Usually we don't have a tree decomposition of a graph beforehand.

## Tree decomposition algorithms

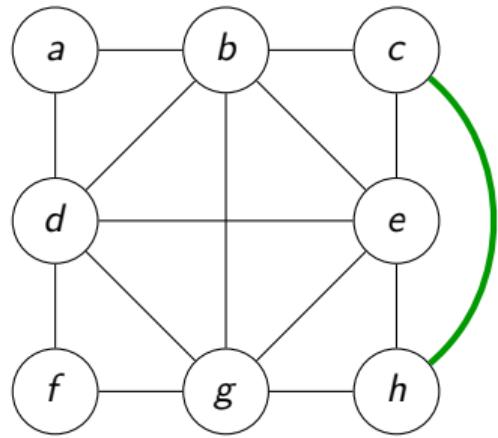
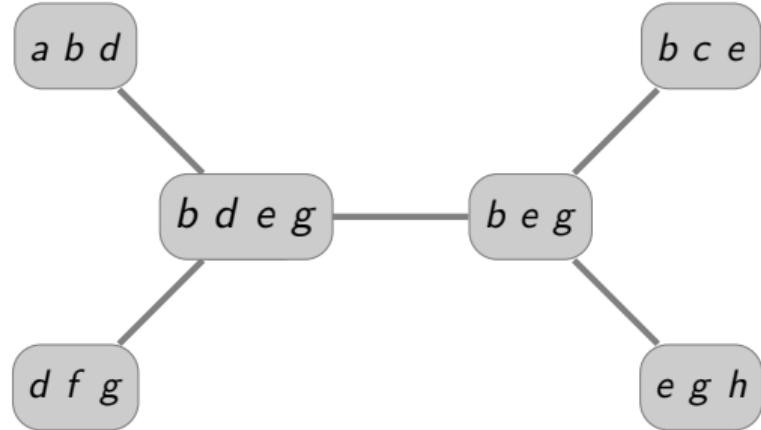
**Given** an  $n$ -vertex graph  $G$  of treewidth  $w$ , we can **find** a tree decomposition of  $G$ ...

|                            | Width guarantee | Time                           |
|----------------------------|-----------------|--------------------------------|
| [Robertson, Seymour '86]   | $4w + 3$        | $2^{\mathcal{O}(w)} \cdot n^2$ |
| [Bodlaender '96]           | $w$             | $2^{\mathcal{O}(w^3)} \cdot n$ |
| [Bodlaender et al. '16]    | $5w + 4$        | $2^{\mathcal{O}(w)} \cdot n$   |
| [Korhonen '21]             | $2w + 1$        | $2^{\mathcal{O}(w)} \cdot n$   |
| [Korhonen, Lokshtanov '23] | $w$             | $2^{\mathcal{O}(w^2)} \cdot n$ |

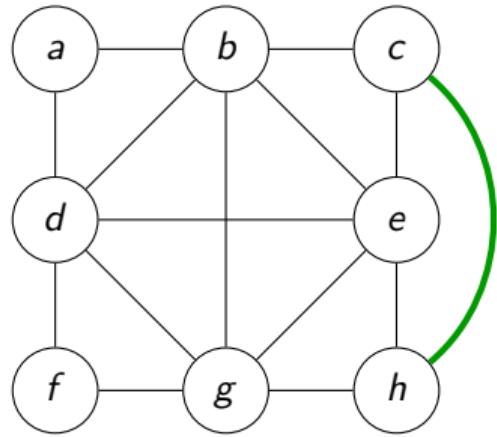
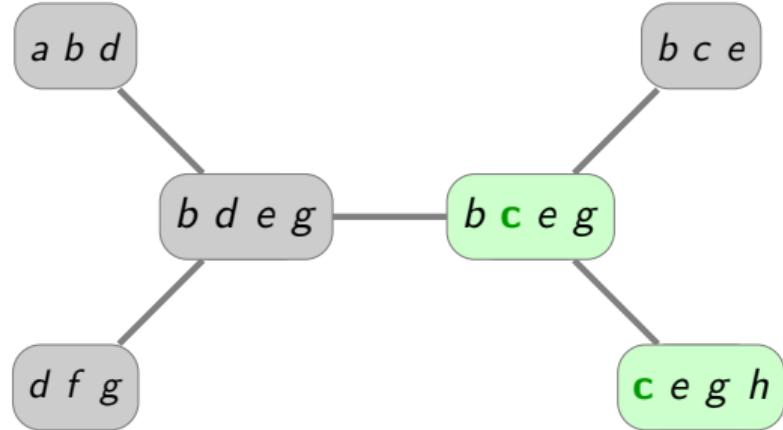
Suddenly...



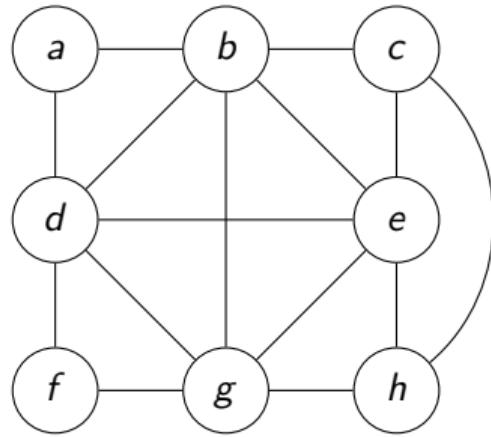
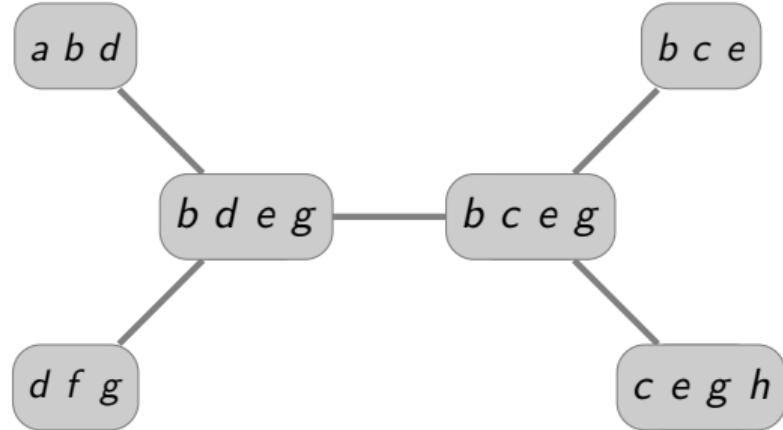
Suddenly...



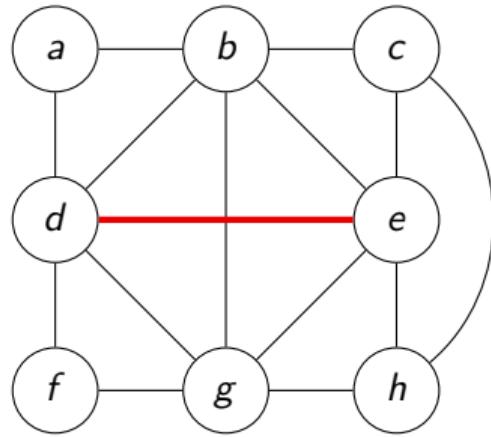
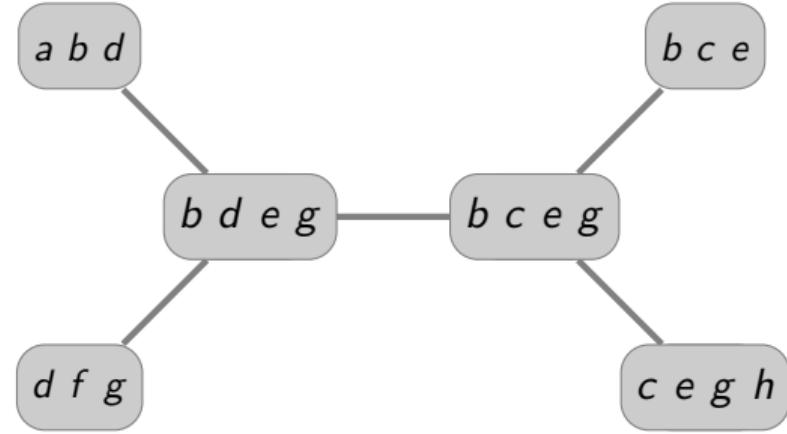
Suddenly...



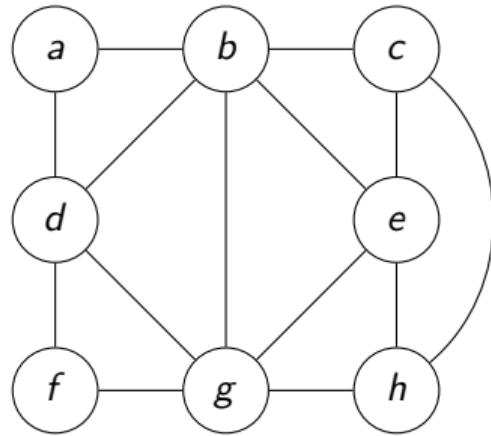
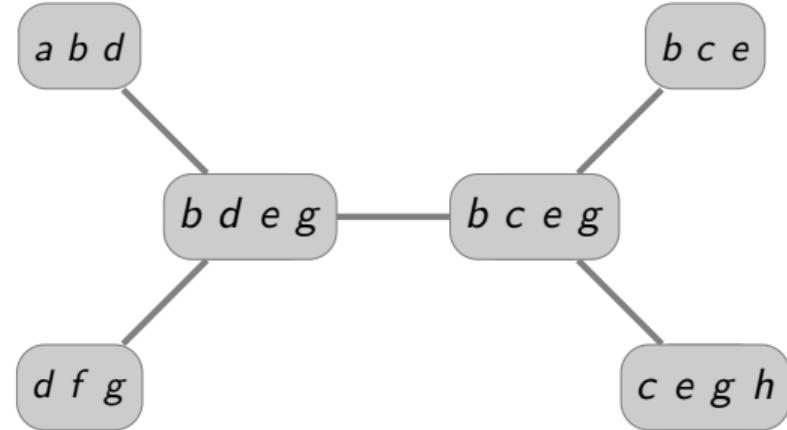
Suddenly...



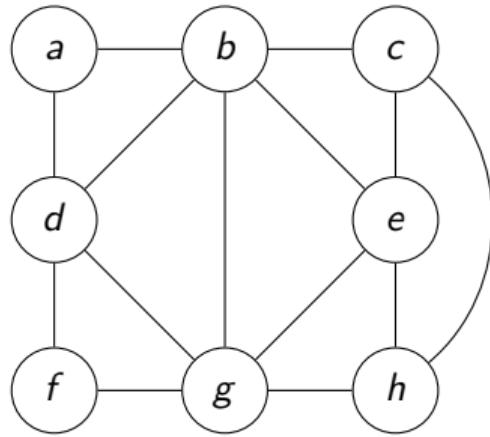
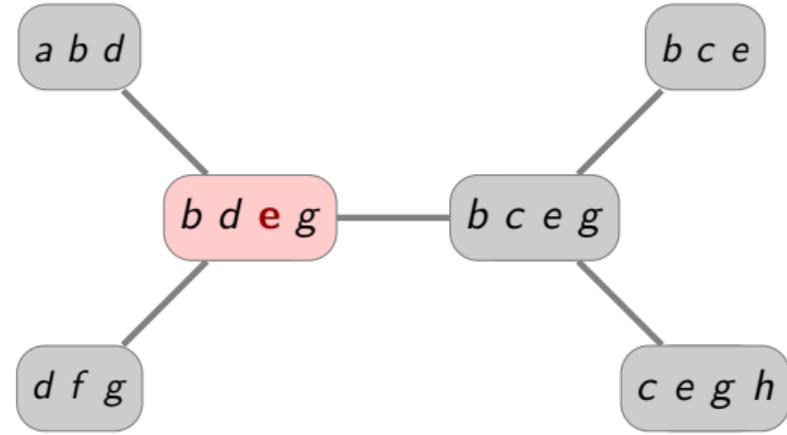
Suddenly...



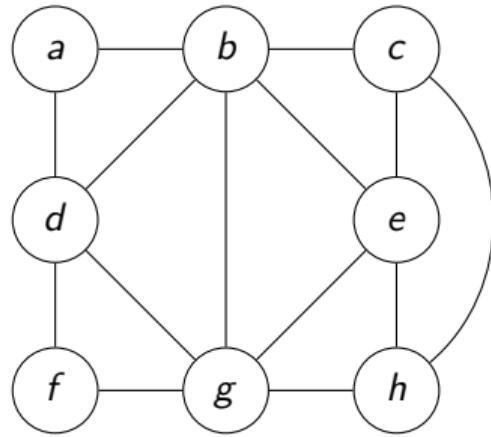
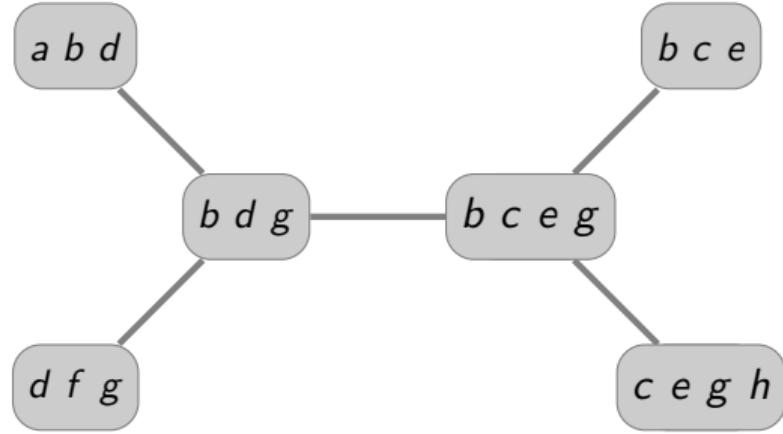
Suddenly...



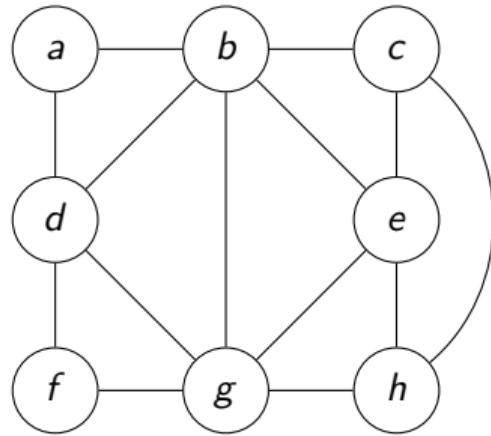
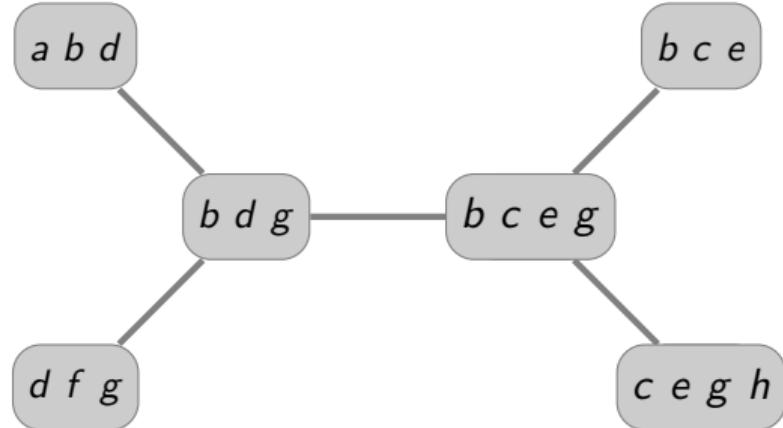
Suddenly...



Suddenly...



Suddenly...



## Problem

How to maintain tree decompositions of **dynamic graphs**?

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w \dots$

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w$  . . .

**We maintain:** a tree decomposition of  $G$  of width at most  $6w + 5$  . . .

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w$  . . .

**We maintain:** a tree decomposition of  $G$  of width at most  $6w + 5$  . . .

**Initialization time:**  $2^{w^{\mathcal{O}(1)}} \cdot n$

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w$  . . .

**We maintain:** a tree decomposition of  $G$  of width at most  $6w + 5$  . . .

**Initialization time:**  $2^{w^{\mathcal{O}(1)}} \cdot n$

**Update time:**  $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}} \text{ (amortized)}$

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w$  . . .

**We maintain:** a tree decomposition of  $G$  of width at most  $6w + 5$  . . .

**Initialization time:**  $2^{w^{\mathcal{O}(1)}} \cdot n$

**Update time:**  $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}} \text{ (amortized)}$

$$\log^{1000} n \ll 2^{\sqrt{\log n \log \log n}} \ll n^{0.001}$$

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w$  . . .

**We maintain:** a tree decomposition of  $G$  of width at most  $6w + 5$  . . .

**Initialization time:**  $2^{w^{\mathcal{O}(1)}} \cdot n$

**Update time:**  $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$  (amortized)

### Extension

We can also dynamically solve any decision/optimization problem expressible in CMSO<sub>2</sub> logic.

# Dynamic Treewidth

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

## DYNAMIC TREewidth

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w$  . . .

**We maintain:** a tree decomposition of  $G$  of width at most  $6w + 5$  . . .

**Initialization time:**  $2^{w^{\mathcal{O}(1)}} \cdot n$

**Update time:**  $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$  (amortized)

### Extension

We can also dynamically solve any decision/optimization problem expressible in CMSO<sub>2</sub> logic.

MAX MATCHING, MAX INDEPENDENT SET, LONGEST PATH, HAMILTONIAN CYCLE . . .

# Dynamic Treewidth: Follow-Up

Korhonen [FOCS '25]

## DYNAMIC TREewidth IN LOGARITHMIC TIME

### Follow-up result

In a **dynamic graph**  $G$  with  $n$  vertices of treewidth  $w$ ...

**We maintain:** a tree decomposition of  $G$  of width at most  $9w + 8$ ...

**Initialization time:**  $2^{\mathcal{O}(w)} \cdot n$

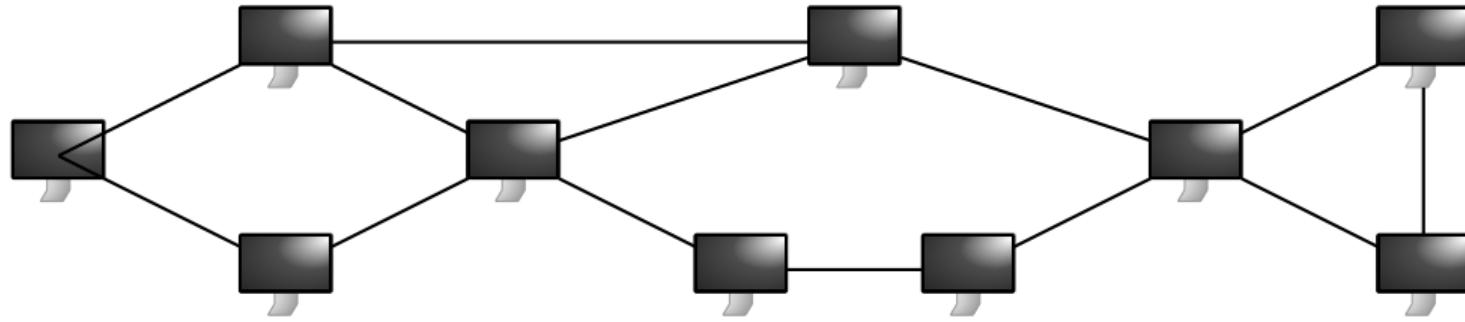
**Update time:**  $2^{\mathcal{O}(w)} \cdot \log n$  (amortized)

### Extension

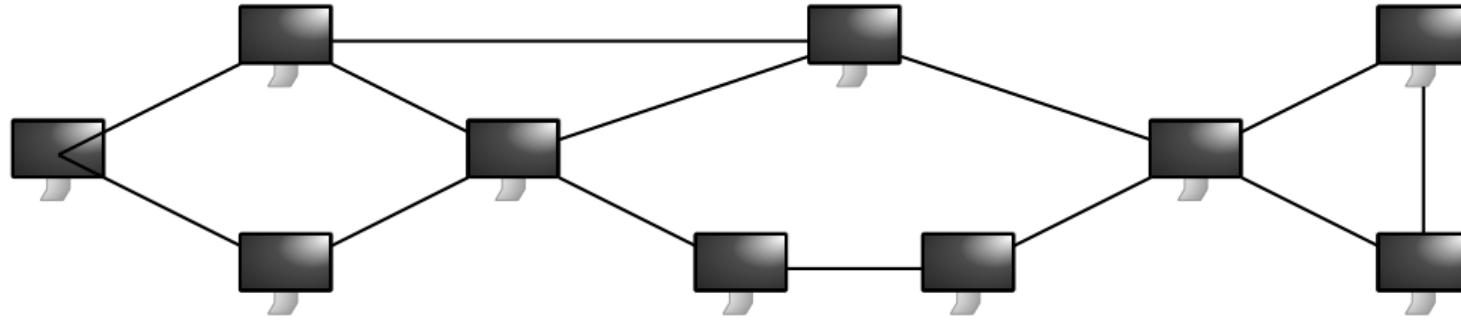
We can also dynamically solve any decision/optimization problem expressible in  $\text{CMSO}_2$  logic.

MAX MATCHING, MAX INDEPENDENT SET, LONGEST PATH, HAMILTONIAN CYCLE...

# Biconnectivity

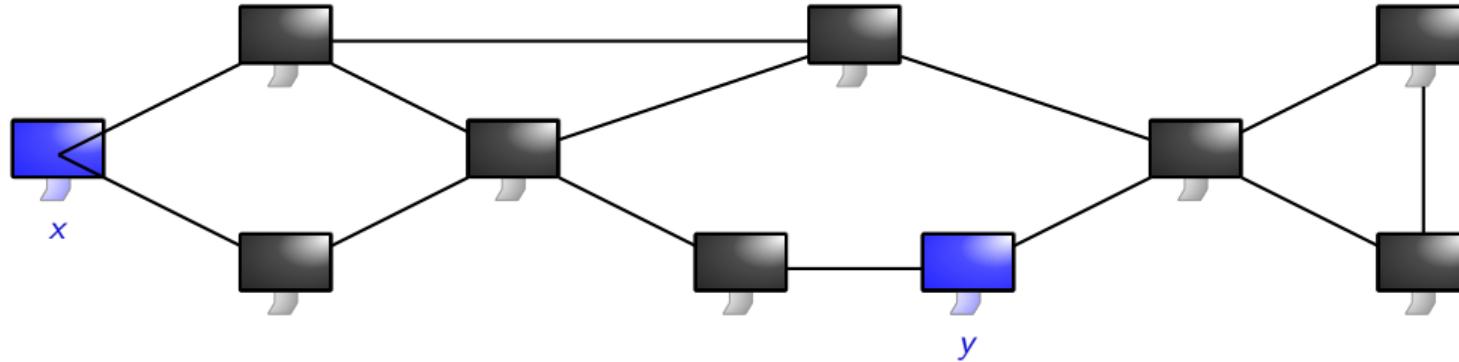


# Biconnectivity



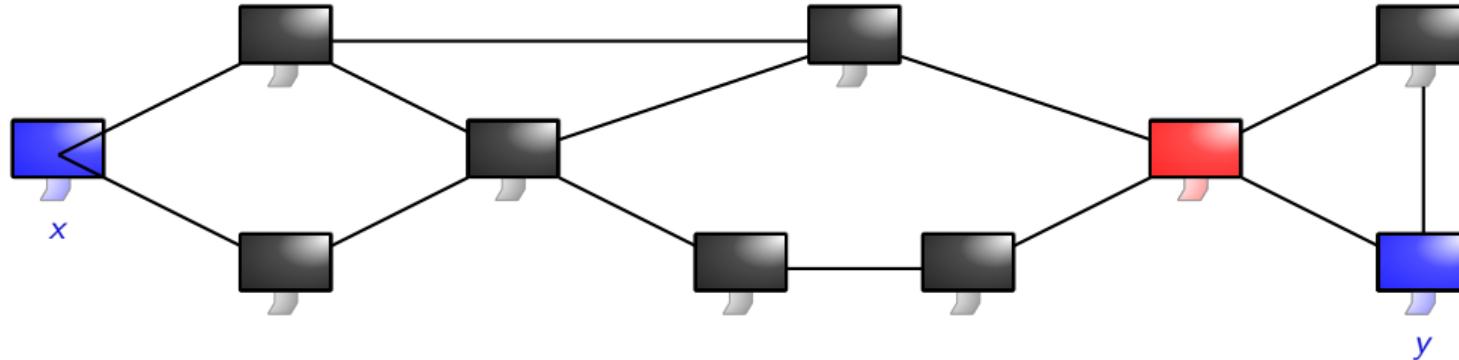
$x, y$  **biconnected**  $\iff$  in the same connected component,  
not separated by another vertex

# Biconnectivity



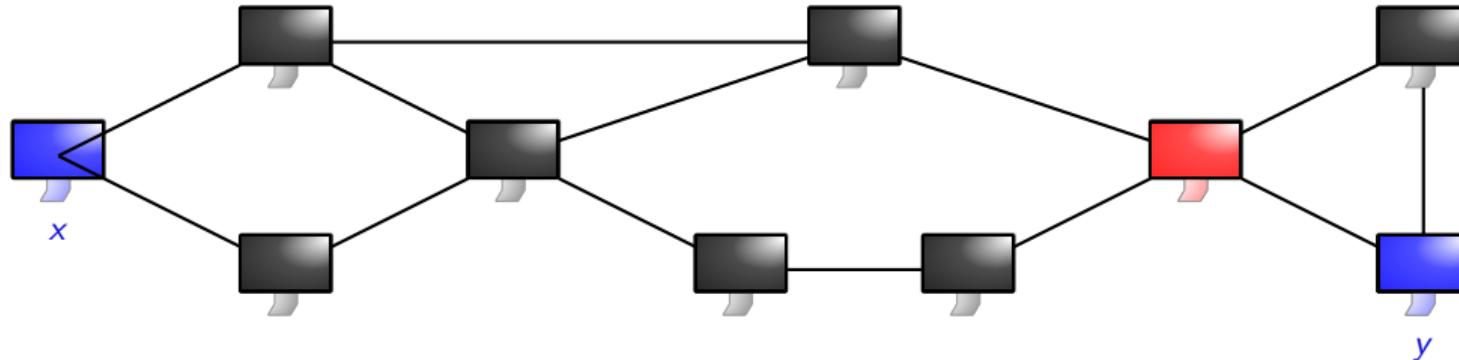
$x, y$  **biconnected**  $\iff$  in the same connected component,  
not separated by another vertex

# Biconnectivity



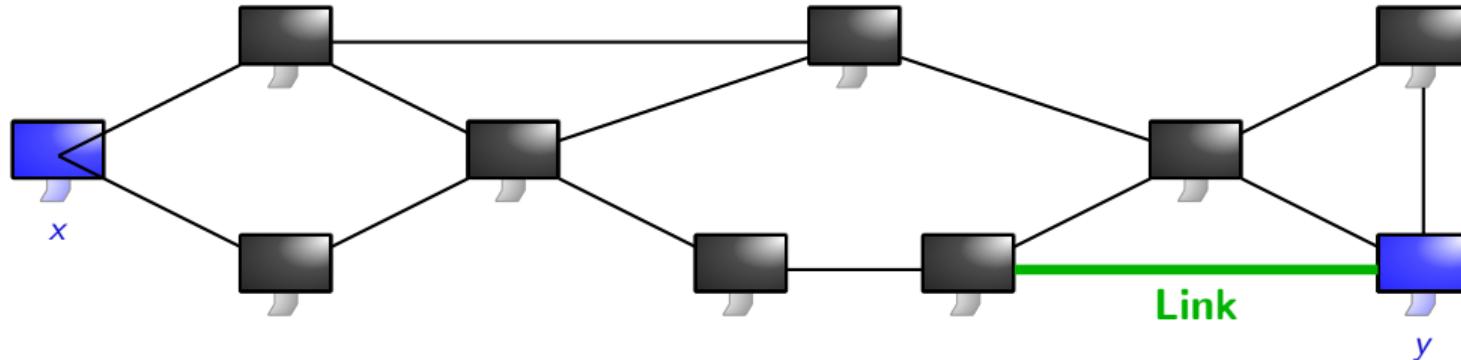
$x, y$  biconnected  $\iff$  in the same connected component,  
not separated by **another vertex**

## Dynamic Biconnectivity



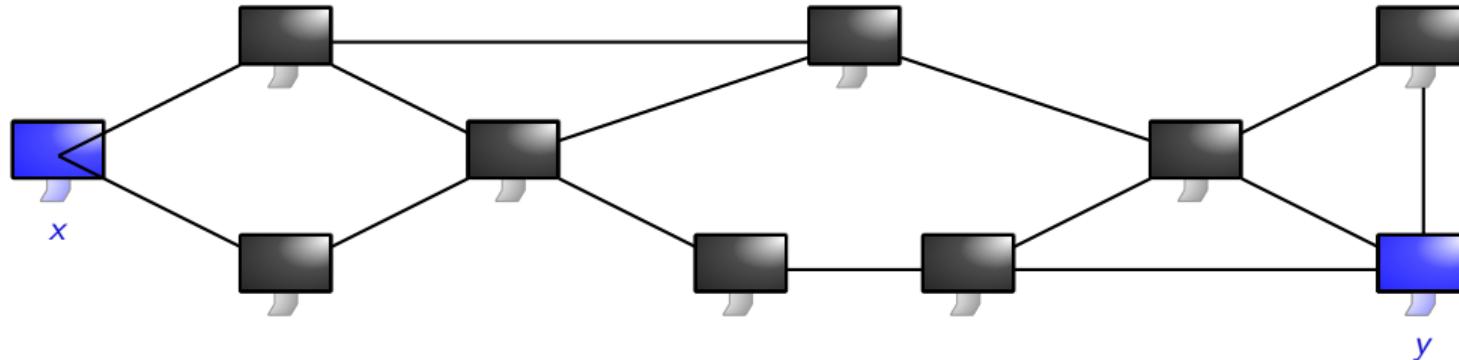
$x, y$  biconnected  $\iff$  in the same connected component,  
not separated by another vertex

# Dynamic Biconnectivity



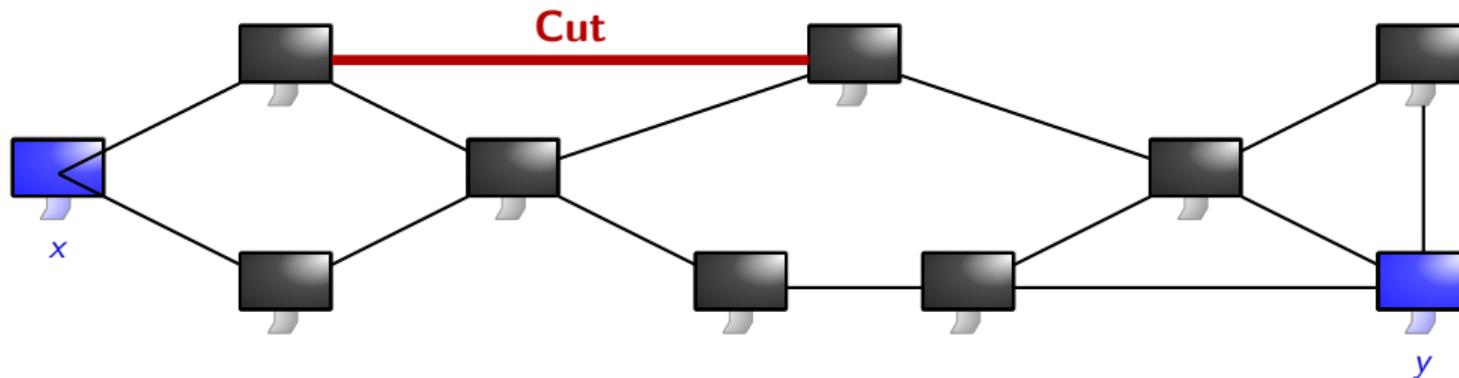
$x, y$  biconnected  $\iff$  in the same connected component,  
not separated by another vertex

# Dynamic Biconnectivity



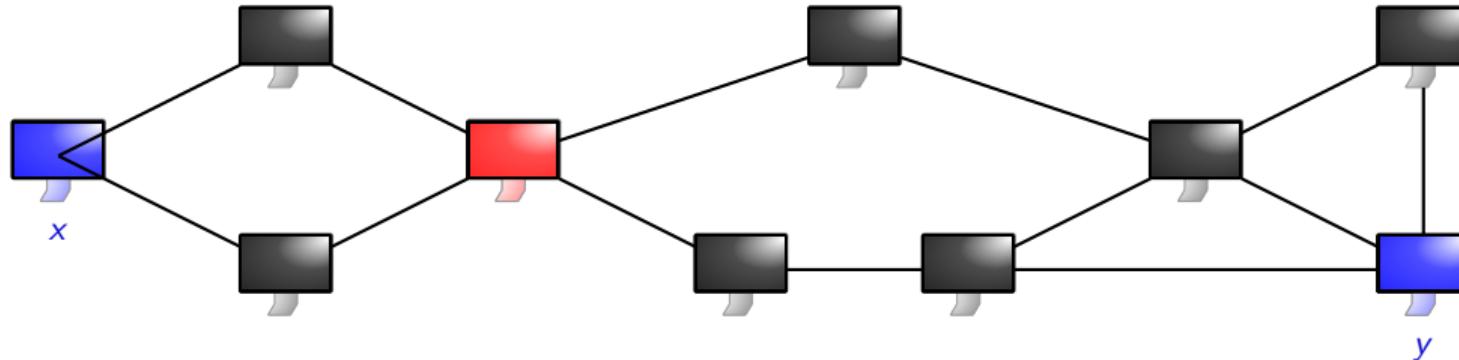
$x, y$  **biconnected**  $\iff$  in the same connected component,  
not separated by another vertex

# Dynamic Biconnectivity



$x, y$  biconnected  $\iff$  in the same connected component,  
not separated by another vertex

## Dynamic Biconnectivity



$x, y$  biconnected  $\iff$  in the same connected component,  
not separated by another vertex

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

|                 | Update/Query Time      | Deterministic? |
|-----------------|------------------------|----------------|
| [Henzinger '92] | $\mathcal{O}(m^{2/3})$ | yes            |

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

|                       | Update/Query Time      | Deterministic? |
|-----------------------|------------------------|----------------|
| [Henzinger '92]       | $\mathcal{O}(m^{2/3})$ | yes            |
| [Eppstein et al. '92] | $\mathcal{O}(n^{2/3})$ | yes            |

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

|                       | Update/Query Time      | Deterministic? |
|-----------------------|------------------------|----------------|
| [Henzinger '92]       | $\mathcal{O}(m^{2/3})$ | yes            |
| [Eppstein et al. '92] | $\mathcal{O}(n^{2/3})$ | yes            |
| [Henzinger '00]       | $\mathcal{O}(n^{1/2})$ | yes            |

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

|                       | Update/Query Time       | Deterministic? |
|-----------------------|-------------------------|----------------|
| [Henzinger '92]       | $\mathcal{O}(m^{2/3})$  | yes            |
| [Eppstein et al. '92] | $\mathcal{O}(n^{2/3})$  | yes            |
| [Henzinger '00]       | $\mathcal{O}(n^{1/2})$  | yes            |
| [Henzinger, King '95] | $\mathcal{O}(\log^4 n)$ | no             |

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

|                                    | Update/Query Time       | Deterministic? |
|------------------------------------|-------------------------|----------------|
| [Henzinger '92]                    | $\mathcal{O}(m^{2/3})$  | yes            |
| [Eppstein et al. '92]              | $\mathcal{O}(n^{2/3})$  | yes            |
| [Henzinger '00]                    | $\mathcal{O}(n^{1/2})$  | yes            |
| [Henzinger, King '95]              | $\mathcal{O}(\log^4 n)$ | no             |
| [Holm, de Lichtenberg, Thorup '98] | $\mathcal{O}(\log^5 n)$ | yes            |

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

|                                    | Update/Query Time                   | Deterministic? |
|------------------------------------|-------------------------------------|----------------|
| [Henzinger '92]                    | $\mathcal{O}(m^{2/3})$              | yes            |
| [Eppstein et al. '92]              | $\mathcal{O}(n^{2/3})$              | yes            |
| [Henzinger '00]                    | $\mathcal{O}(n^{1/2})$              | yes            |
| [Henzinger, King '95]              | $\mathcal{O}(\log^4 n)$             | no             |
| [Holm, de Lichtenberg, Thorup '98] | $\mathcal{O}(\log^5 n)$             | yes            |
| [Thorup '00]                       | $\mathcal{O}(\log^4 n \log \log n)$ | yes            |

# Dynamic Biconnectivity

Holm, Nadara, Rotenberg, **Sokołowski** [STOC '25]

FULLY DYNAMIC BICONNECTIVITY IN  $\tilde{O}(\log^2 n)$  TIME

|                                    | Update/Query Time                     | Deterministic? |
|------------------------------------|---------------------------------------|----------------|
| [Henzinger '92]                    | $\mathcal{O}(m^{2/3})$                | yes            |
| [Eppstein et al. '92]              | $\mathcal{O}(n^{2/3})$                | yes            |
| [Henzinger '00]                    | $\mathcal{O}(n^{1/2})$                | yes            |
| [Henzinger, King '95]              | $\mathcal{O}(\log^4 n)$               | no             |
| [Holm, de Lichtenberg, Thorup '98] | $\mathcal{O}(\log^5 n)$               | yes            |
| [Thorup '00]                       | $\mathcal{O}(\log^4 n \log \log n)$   | yes            |
| <b>our work</b>                    | $\mathcal{O}(\log^2 n \log^2 \log n)$ | yes            |

# THANK YOU!

## EXTRA SLIDES: DYNAMIC RANKWIDTH

# Treewidth, but for denser graphs

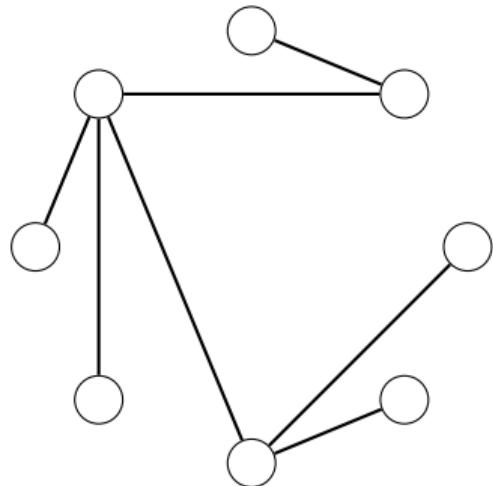
**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!

# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!

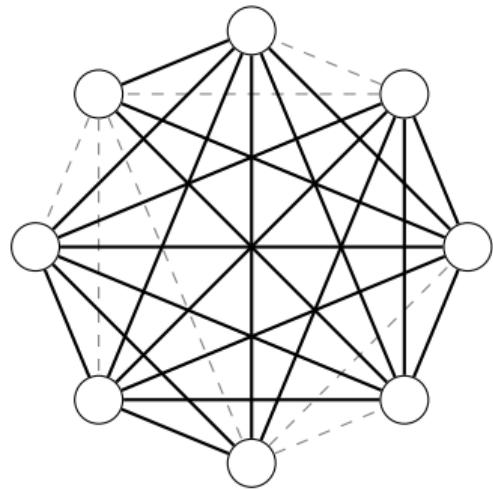


trees

# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!

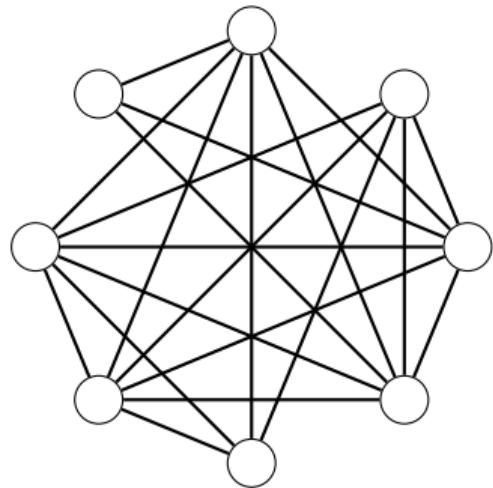


complements of trees

# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!

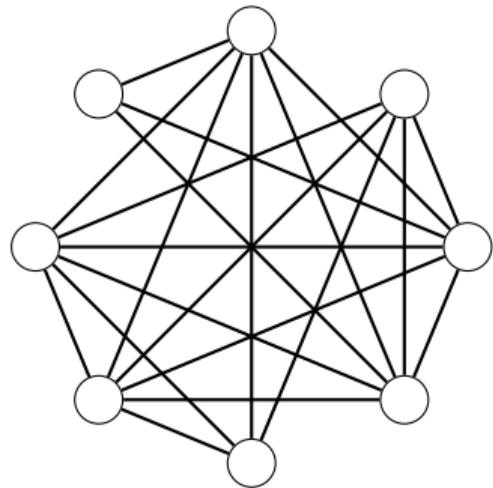


complements of trees

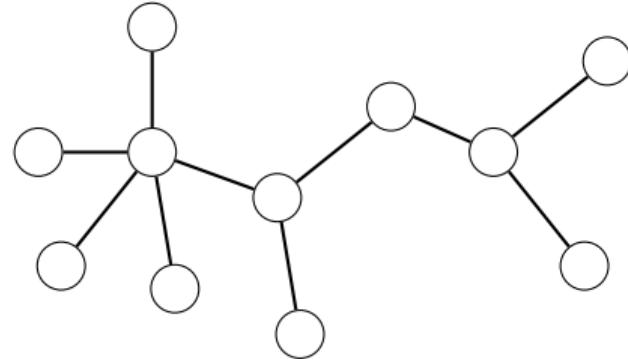
# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!



complements of trees

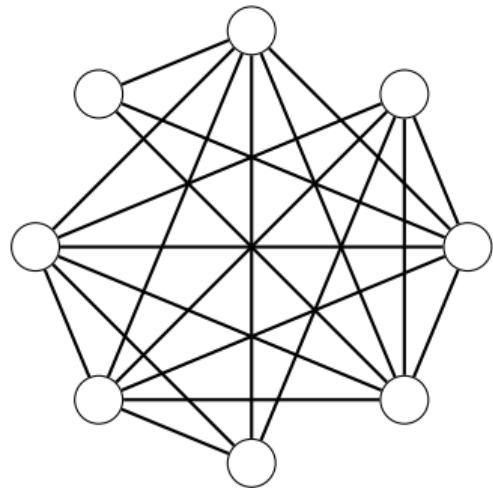


trees

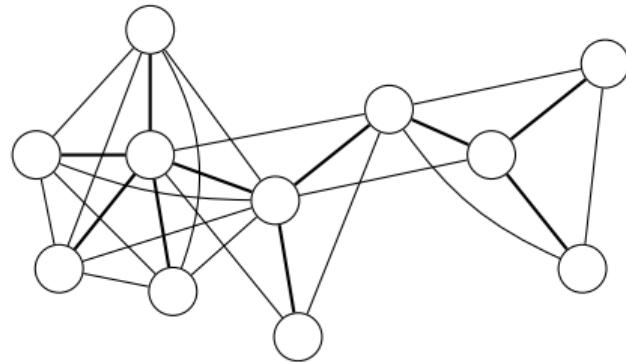
# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!



complements of trees



squares of trees

# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!

## Solution

Equivalent notions of **cliquewidth** [Courcelle et al. '93] and **rankwidth** [Oum, Seymour '06].

# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!

## Solution

Equivalent notions of **cliquewidth** [Courcelle et al. '93] and **rankwidth** [Oum, Seymour '06].

## Rankwidth is great!

**Given:**  $n$ -vertex graph  $G$  and its **rank decomposition** of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{f(w)} \cdot n$

# Treewidth, but for denser graphs

**Issue:** treewidth applicable only to **sparse** graphs...

But there also exist **dense** tree-like graphs!

## Solution

Equivalent notions of **cliquewidth** [Courcelle et al. '93] and **rankwidth** [Oum, Seymour '06].

## Rankwidth is great!

**Given:**  $n$ -vertex graph  $G$  and its **rank decomposition** of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{f(w)} \cdot n$

Also MAX CLIQUE, MIN DOMINATING SET, LONGEST INDUCED PATH, ...

# Rankwidth

Rankwidth is great!

**Given:**  $n$ -vertex graph  $G$  and its **rank decomposition** of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{f(w)} \cdot n$

**Same problem:** Need to compute a rank decomposition.

# Rankwidth

Rankwidth is great!

**Given:**  $n$ -vertex graph  $G$  and its **rank decomposition** of width  $w$

**Then:** MAXIMUM INDEPENDENT SET can be solved in time  $2^{f(w)} \cdot n$

**Same problem:** Need to compute a rank decomposition.

## Rank decomposition algorithms

**Given** an  $n$ -vertex graph  $G$  of rankwidth  $w$ , we can **find** a rank decomposition of  $G$ ...

|                       | Width guarantee | Time                           |
|-----------------------|-----------------|--------------------------------|
| [Oum, Seymour '06]    | $3w + 1$        | $2^{\mathcal{O}(w)} \cdot n^9$ |
| [Oum '08]             | $3w - 1$        | $f(w) \cdot n^3$               |
| [Jeong, Kim, Oum '21] | $w$             | $f(w) \cdot n^3$               |
| [Fomin, Korhonen '22] | $w$             | $f(w) \cdot n^2$               |

# Dynamic Rankwidth

Korhonen, **Sokołowski** [STOC '24]

ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH  
VIA DYNAMIC RANKWIDTH

## Main result

# Dynamic Rankwidth

Korhonen, **Sokołowski** [STOC '24]

## ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices and  $m$  edges of rankwidth  $w$  ...

# Dynamic Rankwidth

Korhonen, **Sokołowski** [STOC '24]

## ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices and  $m$  edges of rankwidth  $w$  . . .

**We maintain:** a rank decomposition of  $G$  of width at most  $4w$  . . .

# Dynamic Rankwidth

Korhonen, **Sokołowski** [STOC '24]

## ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices and  $m$  edges of rankwidth  $w$  . . .

**We maintain:** a rank decomposition of  $G$  of width at most  $4w$  . . .

**Initialization time:**  $2^{f(w)} \cdot n \log^2 n$

# Dynamic Rankwidth

Korhonen, **Sokołowski** [STOC '24]

## ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices and  $m$  edges of rankwidth  $w$  . . .

**We maintain:** a rank decomposition of  $G$  of width at most  $4w$  . . .

**Initialization time:**  $2^{f(w)} \cdot n \log^2 n$

**Update time:**  $2^{f(w)} \cdot \sqrt{\log n \log \log n}$  (amortized)

# Dynamic Rankwidth

Korhonen, **Sokołowski** [STOC '24]

## ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices and  $m$  edges of rankwidth  $w$  . . .

**We maintain:** a rank decomposition of  $G$  of width at most  $4w$  . . .

**Initialization time:**  $2^{f(w)} \cdot n \log^2 n$

**Update time:**  $2^{f(w)} \cdot \sqrt{\log n \log \log n}$  (amortized)

### Extension

We can also dynamically solve any decision/optimization problem expressible in  $\text{CMSO}_1$  logic.

# Dynamic Rankwidth

Korhonen, **Sokołowski** [STOC '24]

## ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

### Main result

In a **dynamic graph**  $G$  with  $n$  vertices and  $m$  edges of rankwidth  $w$  . . .

**We maintain:** a rank decomposition of  $G$  of width at most  $4w$  . . .

**Initialization time:**  $2^{f(w)} \cdot n \log^2 n$

**Update time:**  $2^{f(w)} \cdot \sqrt{\log n \log \log n}$  (amortized)

### Extension

We can also dynamically solve any decision/optimization problem expressible in  $\text{CMSO}_1$  logic.

MAX CLIQUE, MAX INDEPENDENT SET, MIN DOMINATING SET, ~~LONGEST PATH~~ . . .

# Dynamic Rankwidth

## Rank decomposition algorithms

Given an  $n$ -vertex graph  $G$  of rankwidth  $w$ , we can **find** a rank decomposition of  $G$ ...

|                       | Width guarantee | Time                           |
|-----------------------|-----------------|--------------------------------|
| [Oum, Seymour '06]    | $3w + 1$        | $2^{\mathcal{O}(w)} \cdot n^9$ |
| [Oum '08]             | $3w - 1$        | $f(w) \cdot n^3$               |
| [Jeong, Kim, Oum '21] | $w$             | $f(w) \cdot n^3$               |
| [Fomin, Korhonen '22] | $w$             | $f(w) \cdot n^2$               |

# Dynamic Rankwidth

## Rank decomposition algorithms

Given an  $n$ -vertex graph  $G$  of rankwidth  $w$ , we can **find** a rank decomposition of  $G$ ...

|                                   | Width guarantee | Time                                     |
|-----------------------------------|-----------------|------------------------------------------|
| [Oum, Seymour '06]                | $3w + 1$        | $2^{\mathcal{O}(w)} \cdot n^9$           |
| [Oum '08]                         | $3w - 1$        | $f(w) \cdot n^3$                         |
| [Jeong, Kim, Oum '21]             | $w$             | $f(w) \cdot n^3$                         |
| [Fomin, Korhonen '22]             | $w$             | $f(w) \cdot n^2$                         |
| <b>[Korhonen, Sokołowski '24]</b> | $w$             | $f(w) \cdot n^{1+o(1)} + \mathcal{O}(m)$ |