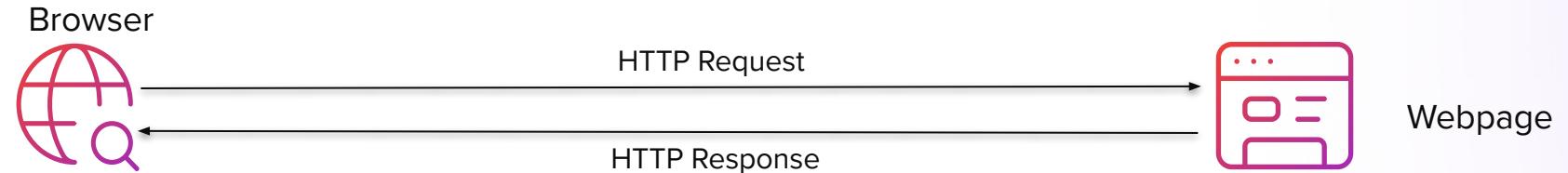


2025-10-15

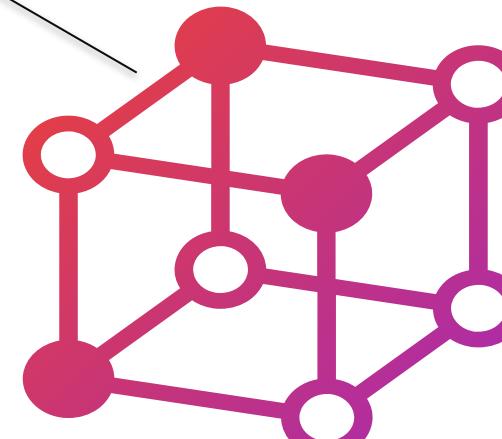
Sequential Representation Learning for Real-Time Bidding

Mateusz Błajda | Maciej Zdanowicz
ML Researcher | ML Research Team Lead

What is Real Time Bidding?

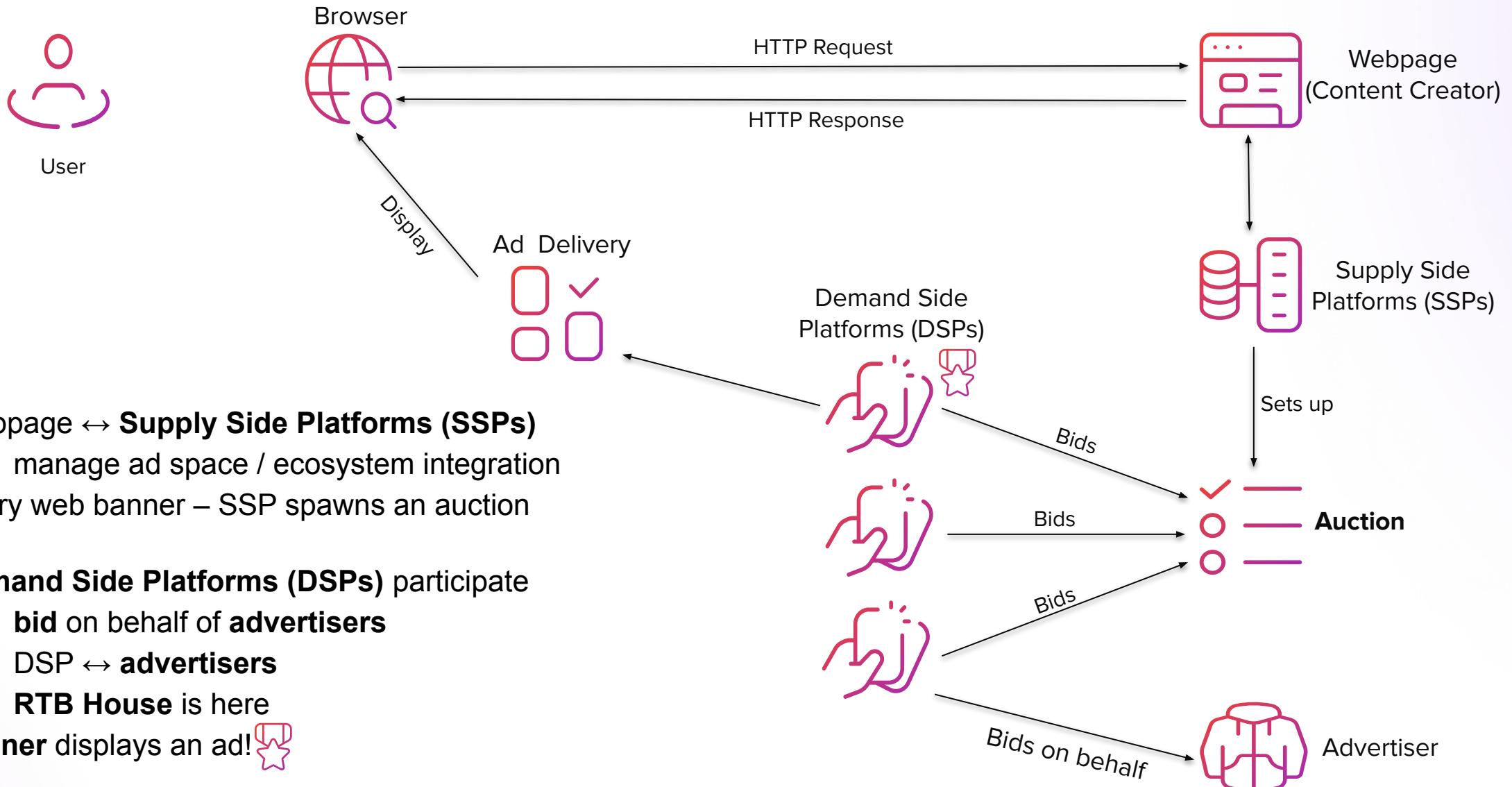


- Programmatic Advertising (AdTech)
 - automation of marketing activity online
 - purpose: **content monetization** and **efficient product advertising**
- **Real-Time Bidding (RTB)**
 - competition mechanism
 - **programmatic auctions** to connect supply and demand
- **RTB House** - global brand from Poland
 - thousands of advertisers
 - **ML-based** techniques

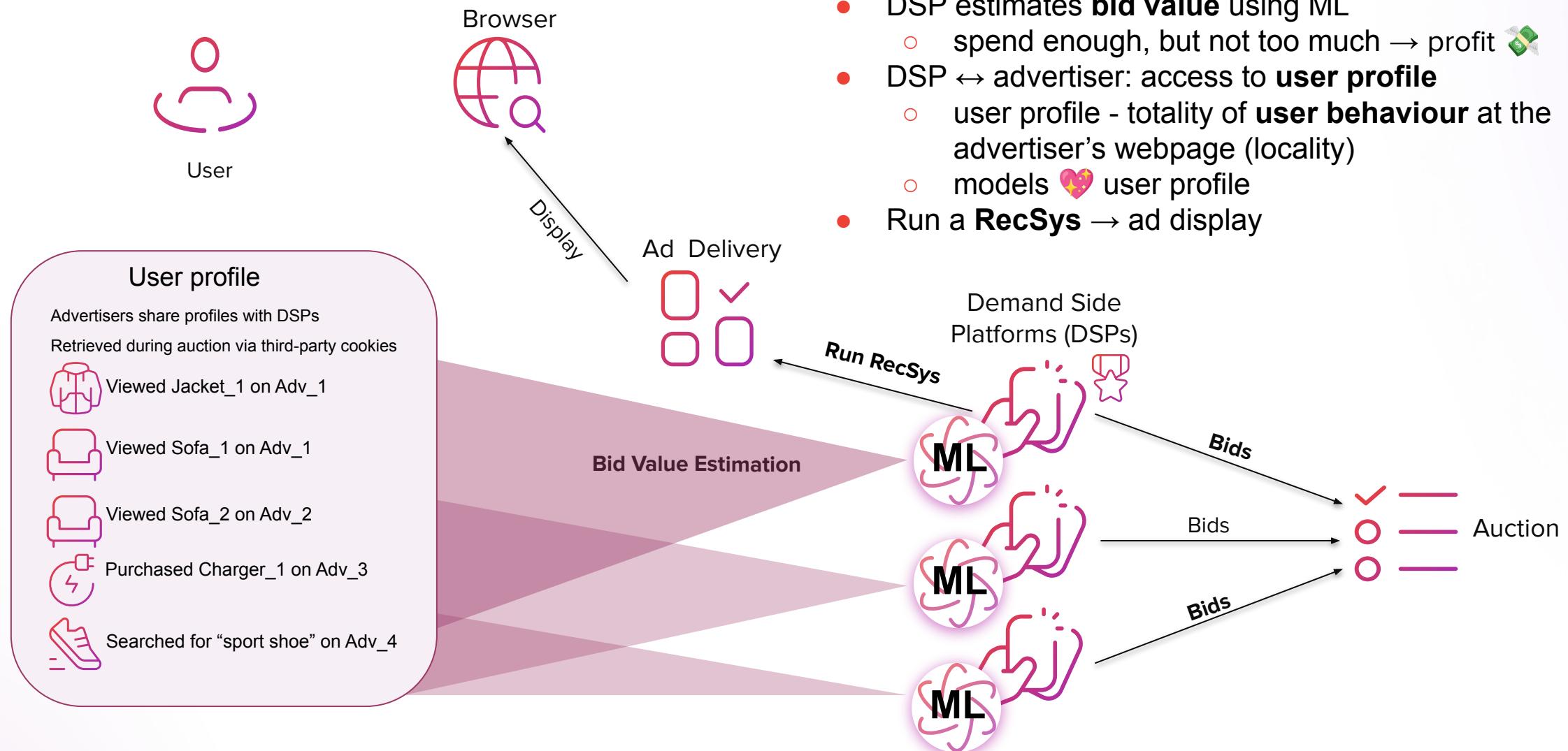


Programmatic
Advertising

What is Real Time Bidding?



What is Real Time Bidding?



Flavours of Machine Learning in RTB

Legacy Bid Value Estimation

- Modeling components:
 - **click-through rate (CTR)**
 - user will click?
 - **conversion rate (CVR)**
 - user will buy?
- Guts of the models:
 - SOTA neural networks for tabular data
 - lightweight with some tricks
- **Peak traffic: Hundreds of mln 🐚 ML eval/sec**
 - prohibitive **latency** constraints
 - real-time, synchronous
 - caching (short TTL)

Bid Value

Neural Networks
lightweight 🐰, tabular
tricks

Real-Time Computation
Feature Engineering

User Profile

Other features: host, browser,
geo, web banner size, ...

Flavours of Machine Learning in RTB

Modern Bid Value Estimation

Goal: Technological Shift!

- Add a **heavyweight, expressive** component
- Leverage sequential structure of UP
- Build **infrastructure** (inference/caching)
- Freshness / compute trade-off (costs)
- User profiles statistics:
 - **hundreds of thousands** changes/sec
 - three orders of magnitude difference

Heavy-weight , sequentially biased computation (transformer)

Bid Value

lightweight

Real-Time Computation
Feature Engineering

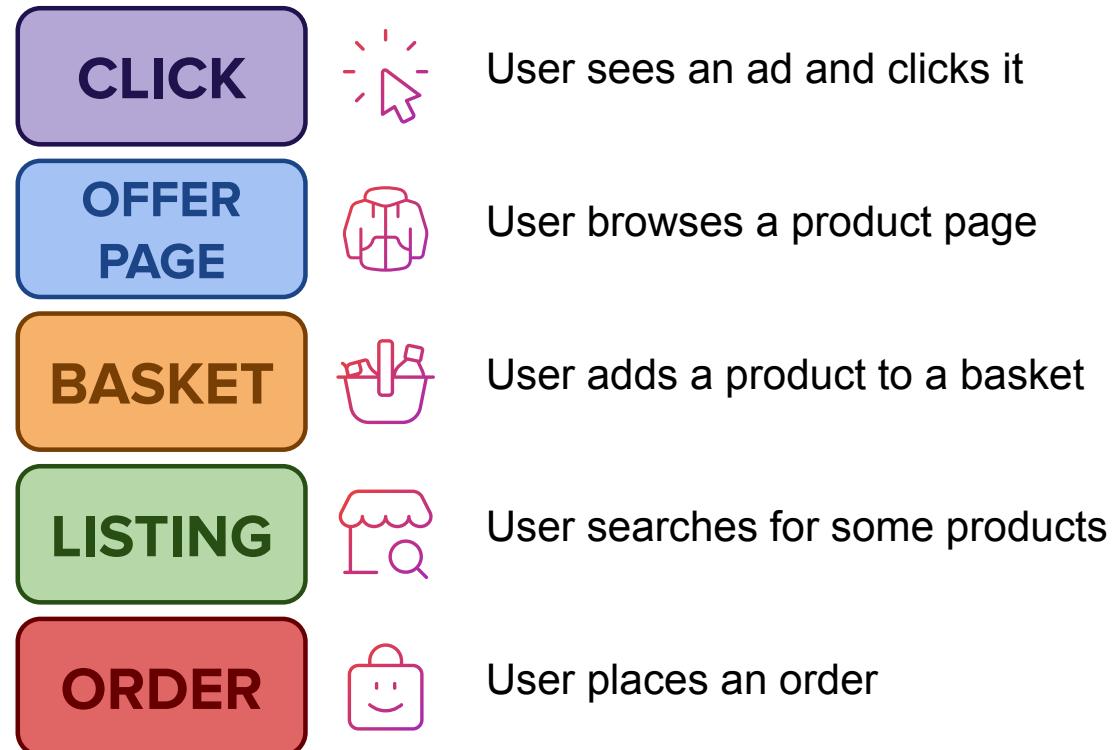
User Representation

User Profile

Other features

How do we create user
representations?

Tags – a base of our Data

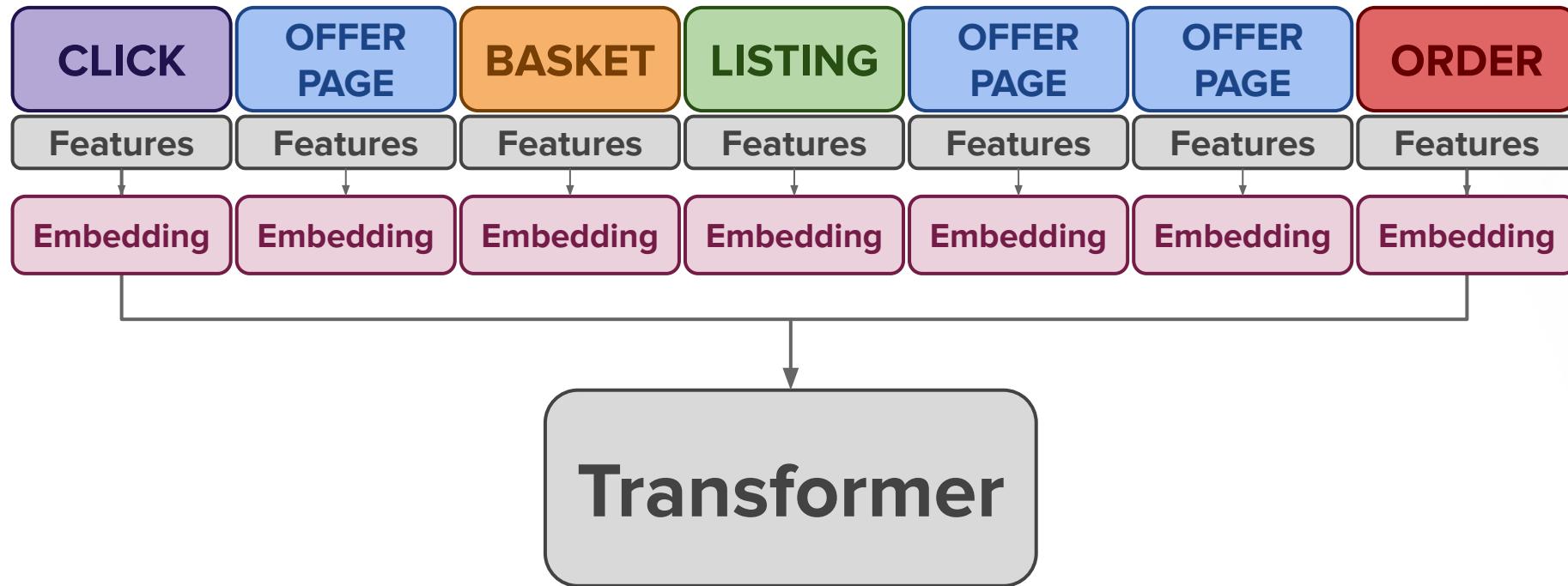


Additional Data in **Tags**

- Timestamps
- Offer related info
 - Offer IDs
 - Prices
 - Categories
- Conversion Value
- Etc...

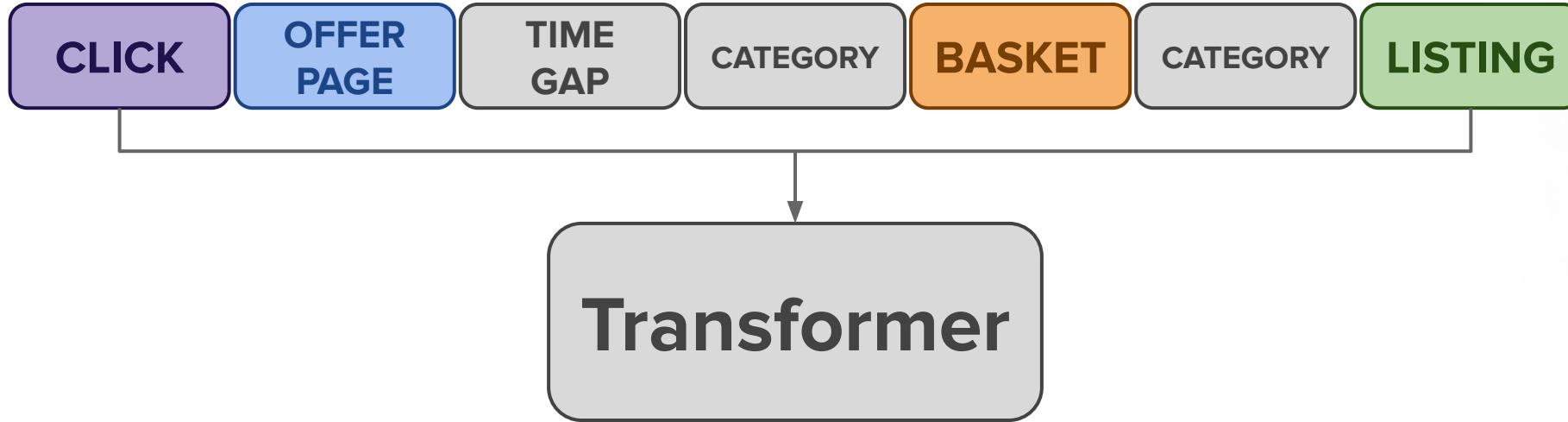
We are training **Transformer**
models from scratch on the
users activity data.

Training Transformers on the Tag Data



1 token = 1 tag

Alternative approach



1 token = 1 tag or 1 discrete feature

We decided not to use it, because:

- Models are hard to compare (different dictionary)
- We fit less tags into context

Training: our Inspiration

PINNERFORMER: Sequence Modeling for User Representation at Pinterest

Nikil Pancha
npancha@pinterest.com
Pinterest
San Francisco, USA

Jure Leskovec
jure@cs.stanford.edu
Stanford University
USA

Andrew Zhai
andrew@pinterest.com
Pinterest
San Francisco, USA

Charles Rosenberg
crosenberg@pinterest.com
Pinterest
San Francisco, USA

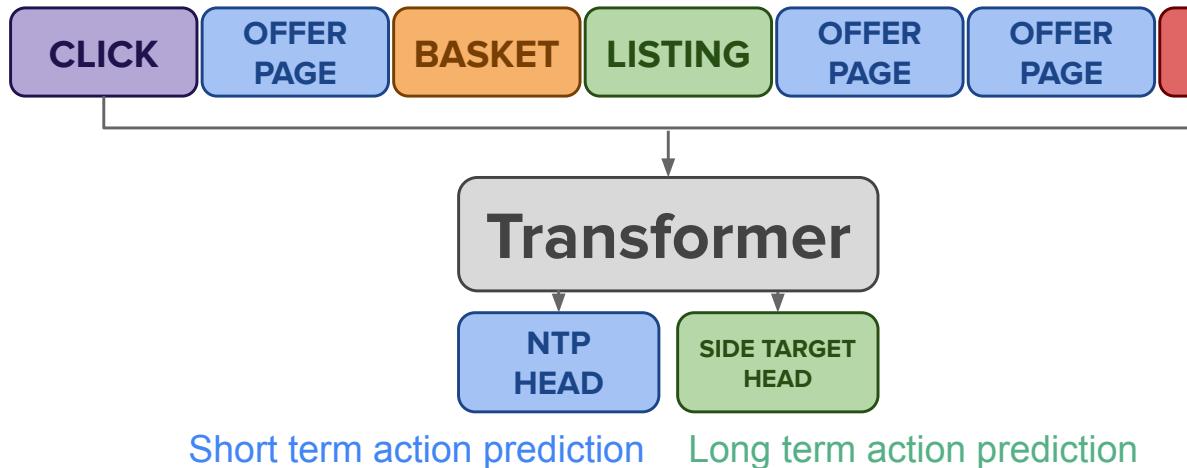
ABSTRACT

Sequential models have become increasingly popular in powering personalized recommendation systems over the past several years. These approaches traditionally model a user's actions on a website as a sequence to predict the user's next action. While theoretically simplistic, these models are quite challenging to deploy in production, commonly requiring streaming infrastructure to reflect the latest user activity and potentially managing mutable data for encoding a user's hidden state. Here we introduce PINNERFORMER, a user representation trained to predict a user's future long-term engagement using a sequential model of a user's recent actions. Unlike prior approaches, we adapt our modeling to a batch infrastructure using a novel attention-based linear layer to capture the sequence of recent actions.

(Repin), clicking through to the underlying link, zooming in on one Pin (close-up), hiding irrelevant content, and more. To achieve our mission of bringing everyone the inspiration to create a life they love, we need to personalize our content with our user's interests and context, taking into consideration feedback a user has given on their Pinterest journey; i.e., we need a strong representation of our users.

Learning user embeddings (representations) has become an increasingly popular method of improving recommendations. Such embeddings have been adopted to power ranking and candidate generation in industry, and are used to power personalized recommendations across YouTube [6], Google Play [26], Airbnb search [8], JD.com search [30], Alibaba [12, 18], and more. In addition to

Long term actions prediction with Side Targets



We combine NTP loss
with losses from side
targets.

Side Targets:

- Conversion in 30 days
- Log time to next conversion
- Interactions with different categories
- Etc, etc

How often should we update **Representations**?

Real Time

(evaluation every bid request)

Better, fresher users representations – we know exactly how much time passed since the last user tag

BUT

Much more model evaluations
hundreds of millions per second

Offline

(update on new tag)

Fewer model evaluations
hundreds of thousands per second
(still hundreds of GPUs required)

BUT

Worse users representations – we don't know when we will get a bid request. There is a big difference between a user who visited a store an hour ago, and one who visited it two weeks ago.

A **compromise** between freshness and amount of computation

We can simulate a clicks happening after different amounts of time

Inspired by this paper ;)

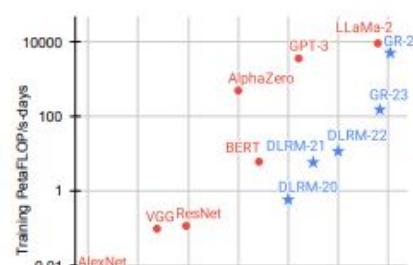
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations

Jiaqi Zhai¹ Lucy Liao¹ Xing Liu¹ Yueming Wang¹ Rui Li¹
 Xuan Cao¹ Leon Gao¹ Zhaojie Gong¹ Fangda Gu¹ Michael He¹ Yinghai Lu¹ Yu Shi¹

Abstract

Large-scale recommendation systems are characterized by their reliance on high cardinality, heterogeneous features and the need to handle tens of billions of user actions on a daily basis. Despite being trained on huge volume of data with thousands of features, most Deep Learning Recommendation Models (DLRMs) in industry fail to scale with compute. Inspired by success achieved

We mask new “CLICK”s attentions to calculate representations for few different scenarios in one pass



CURRENT RESULTS

We trained a **transformer** from scratch and integrated it with our **CVR model**

Offline ROC AUC ↗

1.2%

Legacy Model Context

- Percentage point difference leads to profit increase of 15%
- Ablation studies of our legacy CVR model:
 - BASKET → 1.0% AUC
 - CLICKS → 0.7% AUC

A/B testing ongoing

Plans for the Future

Scale, Scale, Scale

Scale up to thousands of advertisers. Full scale training will take 20k GPU hours*

*estimated for A100 or similar GPUs

Use representations more broadly

Using our users representations in all of our downstream models:

- Conversion Rate (CR)
- Click-Through Rate (CTR)
- Conversion Value (CV)
- Recommenders

Offer Embeddings

Incorporating Semantic Offer Embeddings into our dataset.

We want to use:

- Images
- Titles & Descriptions
- Categories

THE SCALE OF OUR DATA

Our processed dataset has about **7.5TB**
That's **90B** of tokens with additional features

More than

4.5x

Of GPT-2 tokens number

About

30%

Of GPT-3 tokens

THE SCALE OF OUR DATA

Creating Semantic Offer Embeddings
will be challenging...

We have over

5 Billions

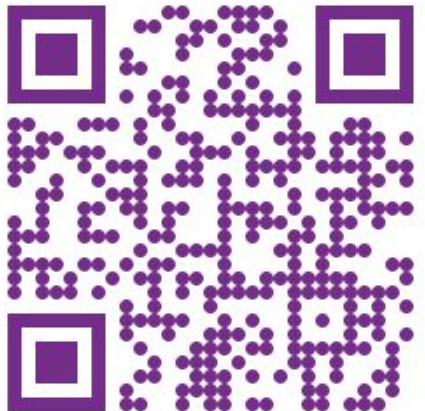
Individual Offers

Does that sound like an interesting
challenge?

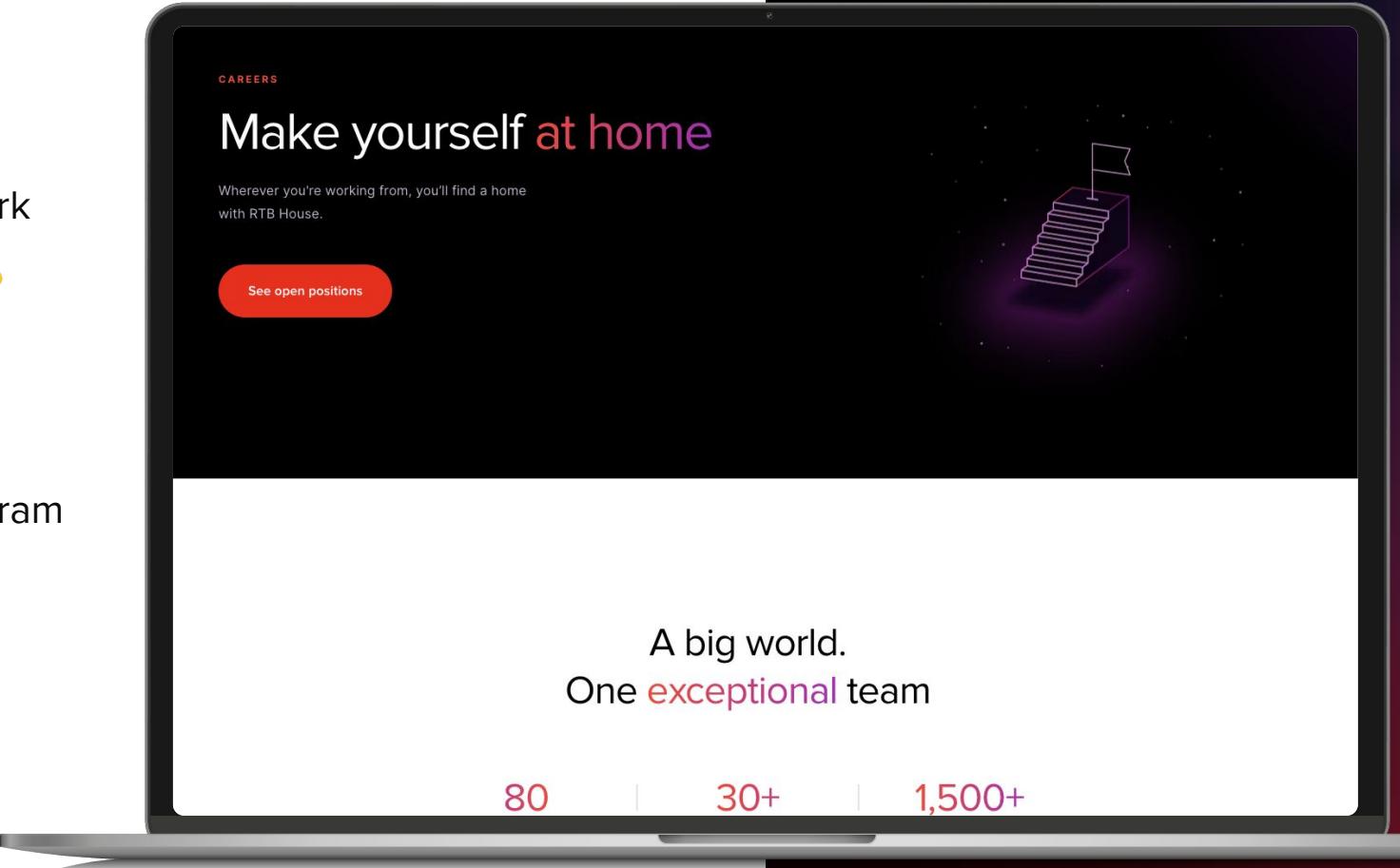
Sequential Representation Learning for Real-Time Bidding

Open positions

- Ownership of meaningful parts of work
- Impact measured in hundreds mln 💰
- Very competitive salary
- Cool get-together destinations 🌋🌴
- Competent and bright colleagues
 - OI, OM, PhDs, ex-Google/Instagram



<https://www.rtthouse.com/careers>



Thank you

Get in touch with us!

Mateusz Błajda

ML Researcher

 mateusz.blajda@rtbhouse.com

Maciej Zdanowicz

ML Research Team Lead

 maciej.zdanowicz@rtbhouse.com