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Plan for Today

Background

- What are Gradient Inversion Attacks (GIA’s)?
- How do we evaluate the success of the reconstruction?

Semantic Label Reconstruction

- Label recovery with CLIP (Contrastive Language-Image Pre-training), Radford 
et al., 2021 [2]

- CLIP guided reconstruction 
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[2] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, 
P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning transferable visual models from natural 
language supervision. arXiv preprint arXiv:2103.00020



From Pixels to Meaning

Labeling images

● Start with eavesdropped gradient

● Reconstruct images

● Label the the reconstructed 
image to retrieve semantic labels 
of the training data

Label_0: dog
Label_1: horse
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Data reconstruction

Labeling images

Label_0: dog
Label_1: horse

reconstructed images



How Gradient Inversion Attack Work
original reconstructed

∇W ∇W’

backpropagate
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Total Variation = 
more natural 

images



Different Approaches to GIA’s
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Approach Paper Method / Key Idea

Gradient Matching Loss
Zhu et al., 2019 [1] Used L2 distance

Geiping et al., 2020 [2] Used cosine similarity

Additional Loss Terms

Zhu et al., 2019 [1] None

Geiping et al., 2020 [2] Added Total Variation (TV) loss

Jeon et al., 2021 [3] Added Batch Normalization statistics

Label Distribution 
Recovery

Zhao et al., 2020 [4] Worked only for batch size = 1

Ma et al., 2023 [5] Solved system of linear equations

Latent Space Optimization Fang et al., 2023 [6] Used GAN to optimize latent space
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Results of the Reconstruction
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Batch Size

1 2 4

reconstructed

original



SSIM (Structural Similarity Index Measure)
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MEAN SSIM = 0.7
0.8

0.70.6

0.7



SSIM (Structural Similarity Index Measure)
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maximal similarity



              SSIM(        ,        ) + SSIM(        ,        )

Permutation Agnostic SSIM
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1st assignment

SSIMSMART = max(SSIM1,SSIM2) 

2
SSIM1 =

              SSIM(        ,        ) + SSIM(        ,        )

2nd assignment

2
SSIM2 =



Permutation Agnostic SSIM
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From Pixels to Meaning
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Data reconstruction

Labeling images

Label_0: dog
Label_1: horse

reconstructed images



CLIP for Label Recovery

Text Encoder Image Encoder

cos_sim

Similarity Matrix
Image Dog Frog Cat Truck ...

A 0.7 0.1 0.05 0.05 ...

B 0.65 0.12 0.05 0.05 ...

C 0.08 0.75 0.1 0.02 ...

D 0.1 0.7 0.07 0.02 ...

Label Dog Frog Cat Truck ...

0 0.675 0.11 0.05 0.05 ...

1 0.09 0.725 0.085 0.02 …

“image of a dog”
“image of a cat”

…
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reconstructed images

label_0

label_1

class prompts



Setup & Evaluation
Train model on some 

subset of classes 
CIFAR-10
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Setup & Evaluation
Train model on some 

subset of classes 
CIFAR-10

Data reconstruction

Metric:
● Success of recovery of 

majority class (0/1)

Labeling images

Label_0: dog
Label_1: horse
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Leakage Drops as Batch Size Increases
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● Original - almost 
perfect

● Aggregation 
improves quality

● Batch Size 4 still 2x 
better then random



CLIP Guided Reconstruction

Guidance: “image of an airplane”
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∇W ∇W’

backpropagate

original reconstructed



Oracle Guidance Improves Quality
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Recovering Semantic Labels from CLIP Guidance

CLIP Guided Reconstruction

Guidance: {label_0: dog, 
label_1: cat}

Final Gradient Matching loss: Ldog-cat

Repeat for each possible 
guidance and report one that 

leads to lowest loss
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Thank you!
Summary

● Gradients leak semantic 
information

● Increasing batch size is an 
effective defensive tool

● Aggregation across multiple 
batches improves label 
recovery
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Semantic Label Reconstruction
How to Breach Privacy in Federated Learning

Guidance: “image of an airplane”

∇W ∇W’

backpropagate

original reconstructed
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