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Zhu et al., 2019 [1]
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[1] Zhu, Ligeng, Zhijian Liu, and Song Han. “Deep Leakage D RO N E SWARM .
from Gradients.” arXiv, December 19, 2019. Slide 2




Semantic Label

Zhu et al., 2019 [1] Reconstruction

Why This Matters (SLR)

Label_0O: dog
Label 1: cat
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Plan for Today

Background

- What are Gradient Inversion Attacks (GIA's)?
- How do we evaluate the success of the reconstruction?

Semantic Label Reconstruction

- Label recovery with CLIP (Contrastive Language-Image Pre-training), Radford
et al., 2021 [2]
- CLIP guided reconstruction

[2] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin,
P., Clark, J., Krueger, G., & Sutskever, |. (2021). Learning transferable visual models from natural .
language supervision. arXiv preprint arXiv:2103.00020 S||de 3



From Pixels to Meaning

e Start with eavesdropped gradient
e Reconstruct images
e Label the the reconstructed

image to retrieve semantic labels
of the training data

VW

Data reconstruction @

reconstructed images

Labeling images @

Label 0: dog
Label_1: horse
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From Pixels to Meaning VW

Data reconstruction @

reconstructed images

m—)

Labeling images

Label 0: dog
Label_1: horse
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original reconstructed

Total Variation =

How Gradient Inversion Attack Work
more natural

< backpropagate
images

CD Liotal < Lgrad +A1v - LTV
| 2 )

VW VW | —)p L grad < 1 — cosine _similarity(V', V)
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Different Approaches to GIA's

Approach

Paper

Method / Key Idea

Gradient Matching Loss

Zhu et al., 2019 [1]

Used L2 distance

Geiping et al., 2020 [2]

Used cosine similarity

Additional Loss Terms

Zhu et al., 2019 [1]

None

Geiping et al., 2020 [2]

Added Total Variation (TV) loss

Jeon et al., 2021 [3]

Added Batch Normalization statistics

Label Distribution
Recovery

Zhao et al., 2020 [4]

Worked only for batch size = 1

Ma et al., 2023 [5]

Solved system of linear equations

Latent Space Optimization

Fang et al., 2023 [6]

Used GAN to optimize latent space
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Results of the Reconstruction

Batch Size

reconstructed

original
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SSIM (Structural Similarity Index Measure)
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SSIM (Structural Similarity Index Measure)

SSIM
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Permutation Agnostic SSIM

assignment

) sswl(,n) + ssuvuﬂ,
2

2nd assignment

oo [ I+ =o [ B

SSIM, = >

SSIM

smarT = Max( ,SSIM,))
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Permutation Agnostic SSIM

SMART_SSIM vs SSIM
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From Pixels to Meaning VW

Data reconstruction @

reconstructed images

l Labeling images

Label 0: dog
Label_1: horse
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class prompts reconstructed images

“‘image of a dog”

CLIP for Label Recovery fimage of a cat’

Text Encoder Image Encoder

\:s_SV

Similarity Matrix

Image | Dog Frog Cat Truck

~ label_0

> label 1

J
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>

Train model on some
subset of classes
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Setup & Evaluation

frog
horse
ship
truck

automobile
bird

cat

deer
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Setup & Evaluation
Train model on some VI’;{’/

CIFAR-10 _
=" - B subset of classes
automobile EI ’- Fhas I >
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o %Eg-q-ii=== Data reconstruction
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Labeling images

Label_0: dog
Label_1: horse
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Setup & Evaluation

automobile
bird

cat

deer

frog

horse

ship
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Metric:
Success of recovery of

majority class (0/1)
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Data reconstruction @

Labeling images

Label_0: dog

Label_1: horse
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Leakage Drops as Batch Size Increases

Comparison of Success Rates Across Batch Sizes

Original - almost
perfect

Aggregation
improves quality

Batch Size 4 still 2x
better then random

Majority Success Rate
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CLIP Guided Reconstruction

original reconstructed

Guidance: “image of an airplane”

< backpropagate LN
_— — —_— y 1 y y y (i) y (i)
Lorip = N E (1 cosine_simmilarity(img\”, guidance_prompt ))

i=1

<> Liotal < Lgrad + A1v * LTV
| 1 )

vW v | e [ o< 1— cosine_similarity(V’, V)
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Oracle Guidance Improves Quality

Smart SSIM
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Recovering Semantic Labels from CLIP Guidance

\
Guidance: {label _0: dog,
label 1: cat}
_ Repeat for each possible
CLIP Guided Reconstruction > guidance and report one that
‘ leads to lowest loss
Final Gradient Matching loss: Ldog_Cat
_/
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Semantic Label Reconstruction

How to Breach Privacy in Federated Learning

Thank you!

Summary

original | reconsiructed ‘ e Gradients leak semantic

Guidance: “image of an airplane”

backpropagate i 1nf0rmat10n
Lerp = L Z (1 - oosine,simmilarity(img“), guidance,p’romptw))
=1

. o . .
C IR L oy Increqsmg batch size 1s an
effective defensive tool

Z|

\ YW TW \ me) [ .., 1— cosine_similarity(V’, V)

e Aggregation across multiple
batches improves label
recovery
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