

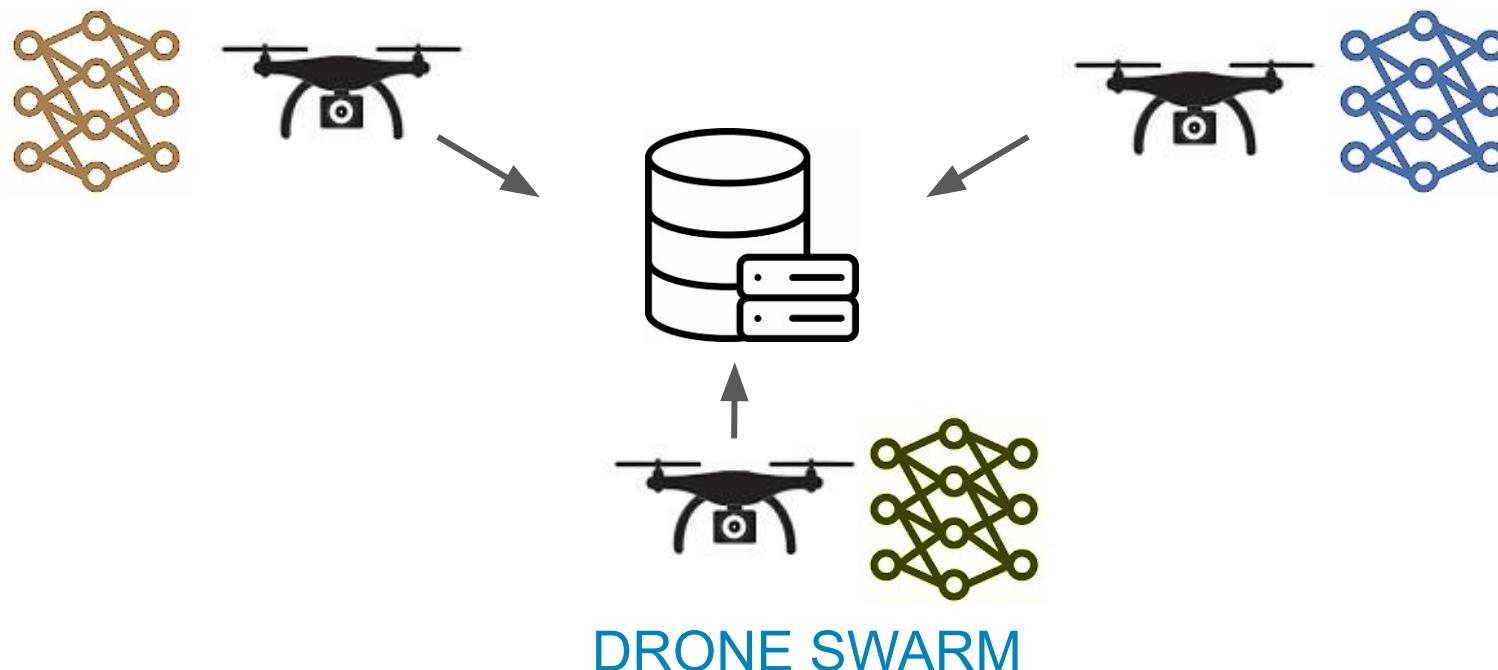
Semantic Label Reconstruction

How to Breach Privacy in Federated Learning

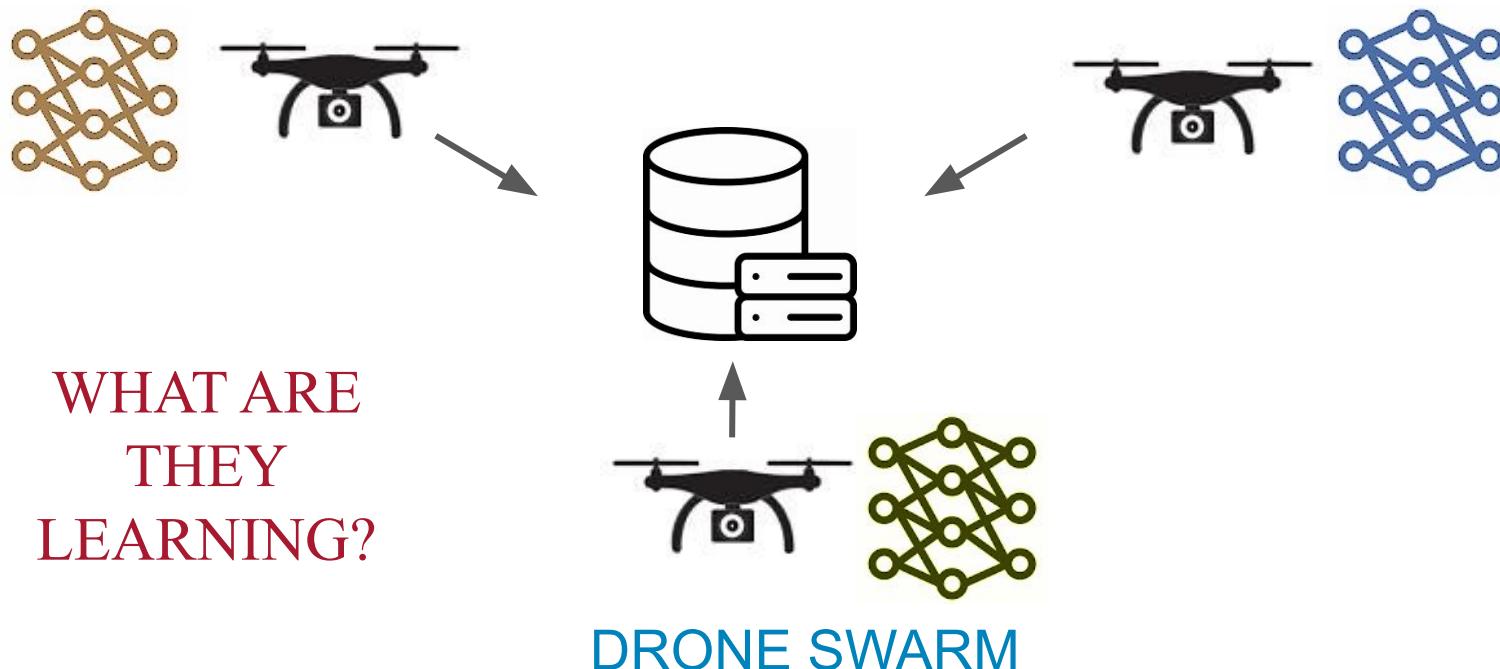
Rafał Malcewicz^{1,2}, Ignacy Stępka¹, Abby Turner¹, Artur Dubrawski¹

¹Auton Lab, Carnegie Mellon University
²Aalto University

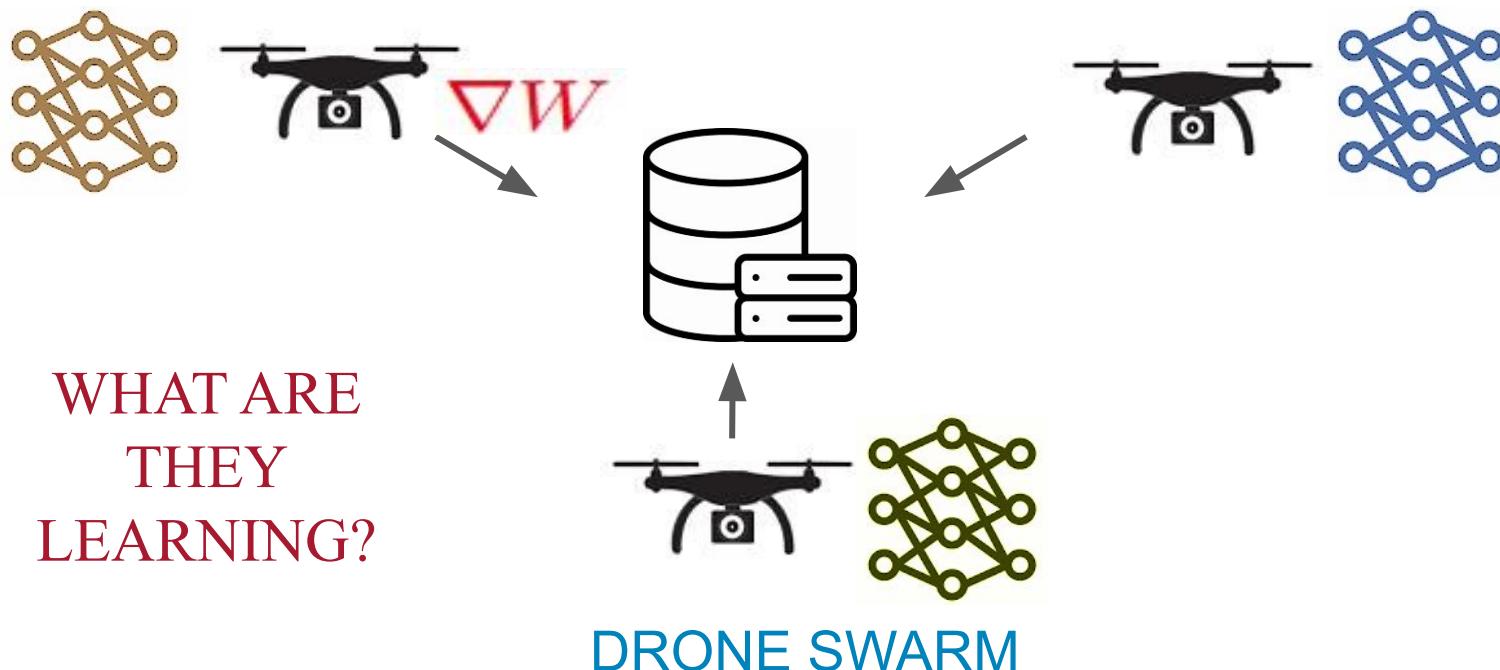
Why This Matters



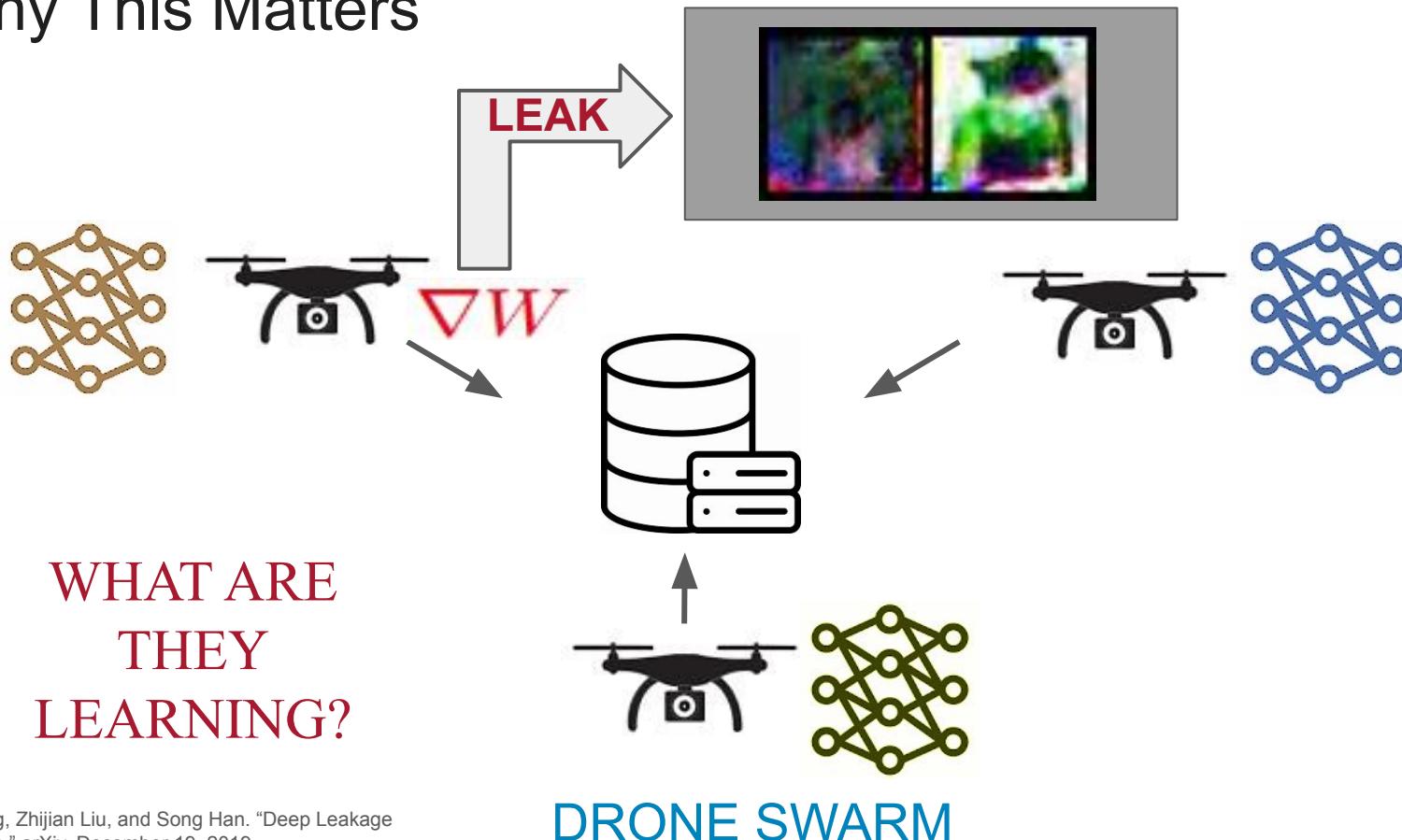
Why This Matters



Why This Matters



Why This Matters

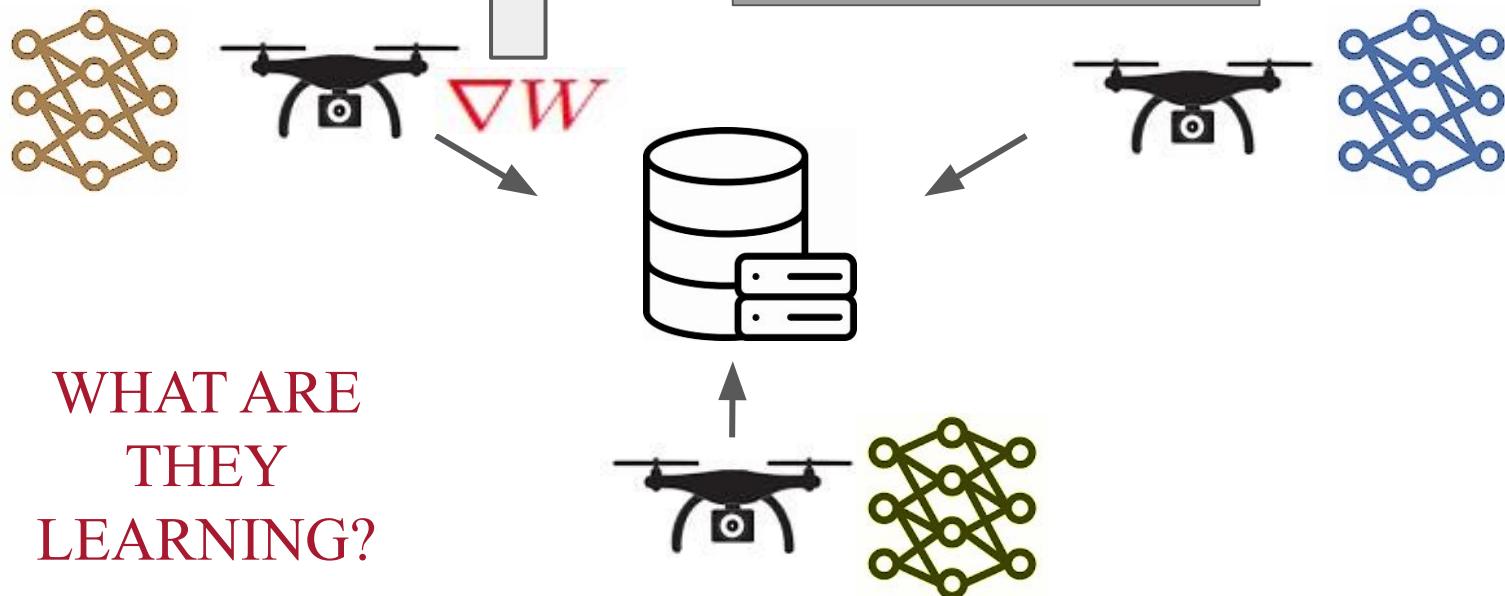


Why This Matters

Zhu et al., 2019 [1]

Semantic Label Reconstruction (SLR)

Label_0: dog
Label_1: cat



Plan for Today

Background

- What are Gradient Inversion Attacks (GIA's)?
- How do we evaluate the success of the reconstruction?

Semantic Label Reconstruction

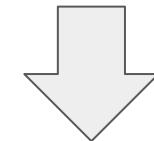
- Label recovery with CLIP (Contrastive Language-Image Pre-training), Radford et al., 2021 [2]
- CLIP guided reconstruction

From Pixels to Meaning

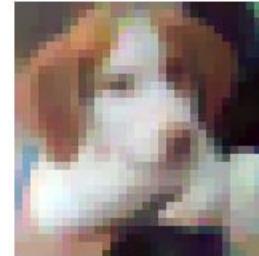
∇W

- Start with eavesdropped gradient
- Reconstruct images
- Label the the reconstructed image to retrieve semantic labels of the training data

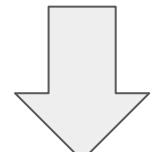
Data reconstruction



reconstructed images



Labeling images

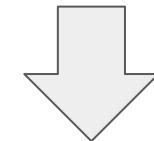


Label_0: **dog**
Label_1: **horse**

From Pixels to Meaning

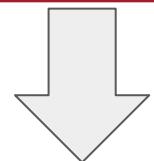
Data reconstruction

∇W



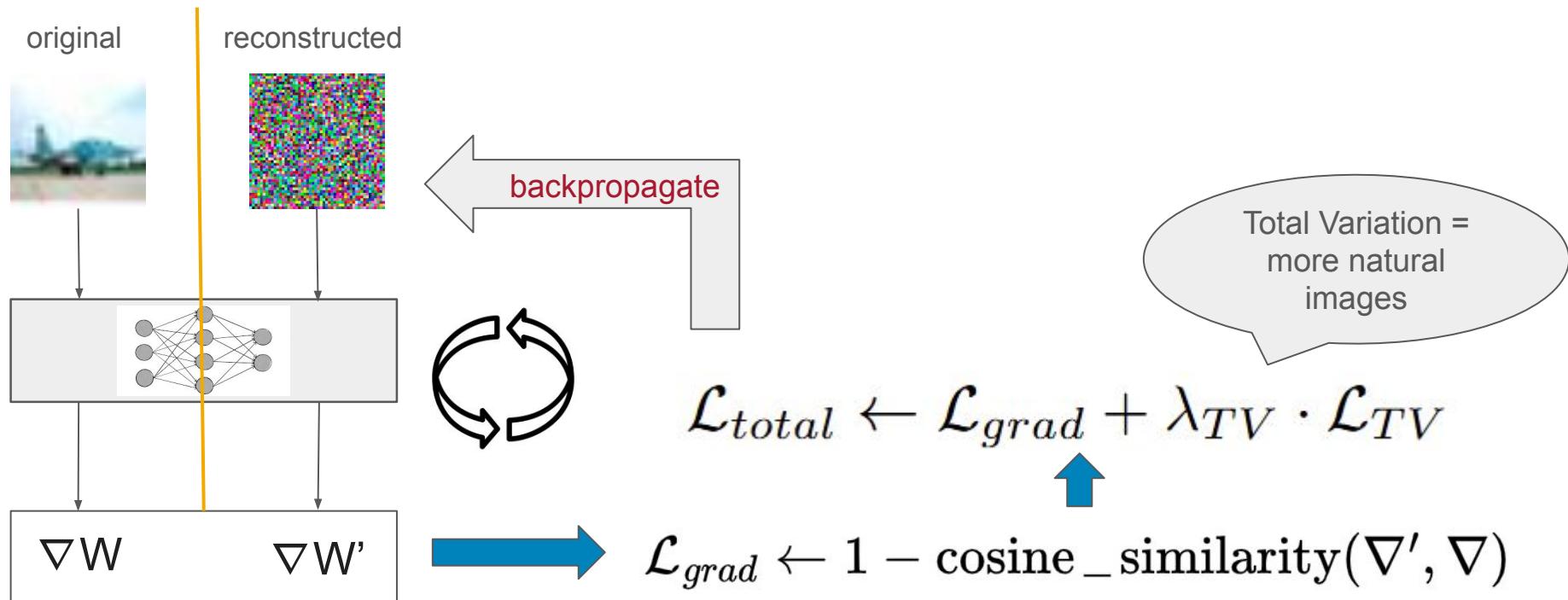
reconstructed images

Labeling images



Label_0: dog
Label_1: horse

How Gradient Inversion Attack Work



Different Approaches to GIA's

Approach	Paper	Method / Key Idea
Gradient Matching Loss	Zhu et al., 2019 [1]	Used L2 distance
	Geiping et al., 2020 [2]	Used cosine similarity
Additional Loss Terms	Zhu et al., 2019 [1]	None
	Geiping et al., 2020 [2]	Added Total Variation (TV) loss
	Jeon et al., 2021 [3]	Added Batch Normalization statistics
Label Distribution Recovery	Zhao et al., 2020 [4]	Worked only for batch size = 1
	Ma et al., 2023 [5]	Solved system of linear equations
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space

Different Approaches to GIA's

Approach	Paper	Method / Key Idea
Gradient Matching Loss	Zhu et al., 2019 [1]	Used L2 distance
	Geiping et al., 2020 [2]	Used cosine similarity
Additional Loss Terms	Zhu et al., 2019 [1]	None
	Geiping et al., 2020 [2]	Added Total Variation (TV) loss
	Jeon et al., 2021 [3]	Added Batch Normalization statistics
Label Distribution Recovery	Zhao et al., 2020 [4]	Worked only for batch size = 1
	Ma et al., 2023 [5]	Solved system of linear equations
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space

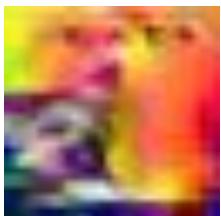
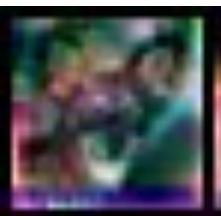
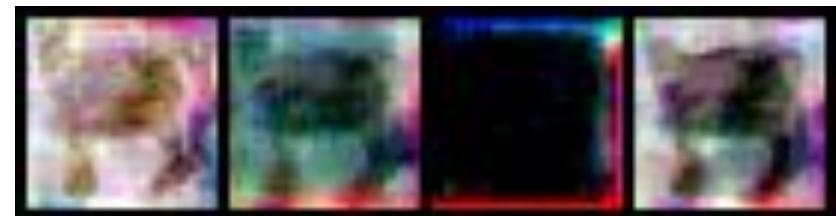
Different Approaches to GIA's

Approach	Paper	Method / Key Idea
Gradient Matching Loss	Zhu et al., 2019 [1]	Used L2 distance
	Geiping et al., 2020 [2]	Used cosine similarity
Additional Loss Terms	Zhu et al., 2019 [1]	None
	Geiping et al., 2020 [2]	Added Total Variation (TV) loss
	Jeon et al., 2021 [3]	Added Batch Normalization statistics
Label Distribution Recovery	Zhao et al., 2020 [4]	Worked only for batch size = 1
	Ma et al., 2023 [5]	Solved system of linear equations
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space

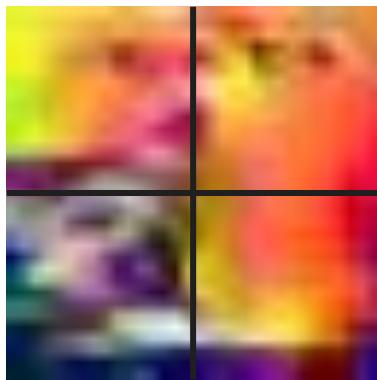
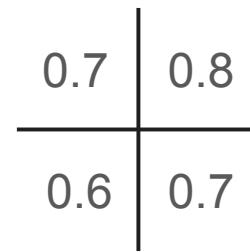
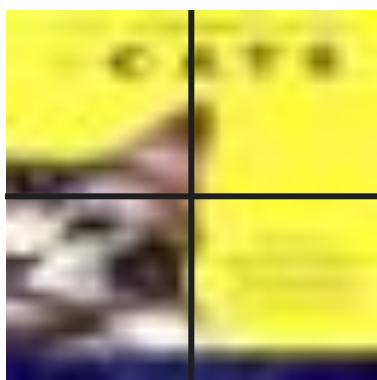
Different Approaches to GIA's

Approach	Paper	Method / Key Idea
Gradient Matching Loss	Zhu et al., 2019 [1]	Used L2 distance
	Geiping et al., 2020 [2]	Used cosine similarity
Additional Loss Terms	Zhu et al., 2019 [1]	None
	Geiping et al., 2020 [2]	Added Total Variation (TV) loss
	Jeon et al., 2021 [3]	Added Batch Normalization statistics
Label Distribution Recovery	Zhao et al., 2020 [4]	Worked only for batch size = 1
	Ma et al., 2023 [5]	Solved system of linear equations
Latent Space Optimization	Fang et al., 2023 [6]	Used GAN to optimize latent space

Results of the Reconstruction

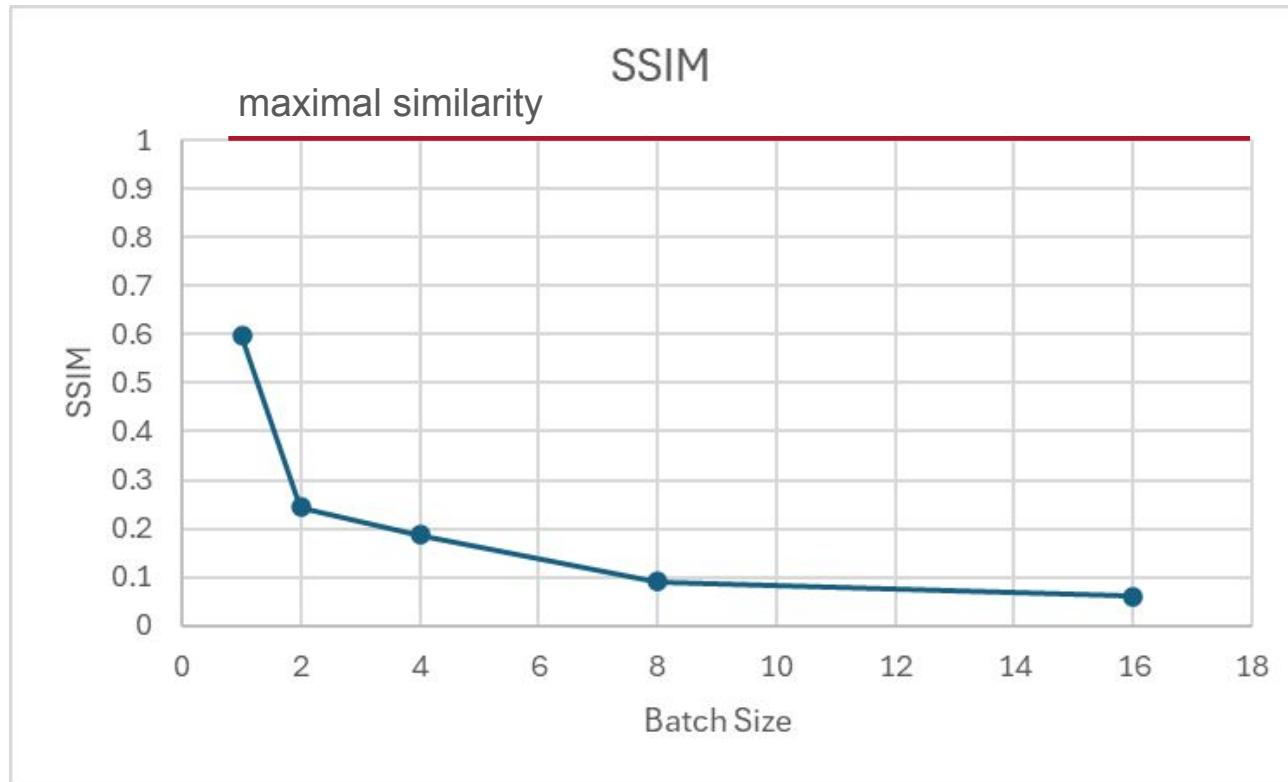
		Batch Size		
		1	2	4
reconstructed				
original				

SSIM (Structural Similarity Index Measure)

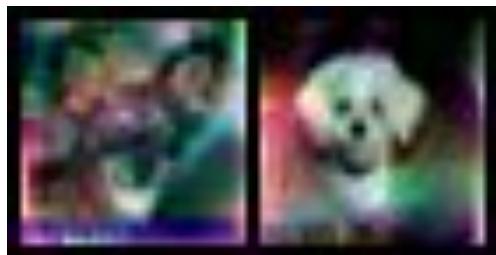
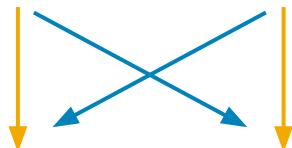
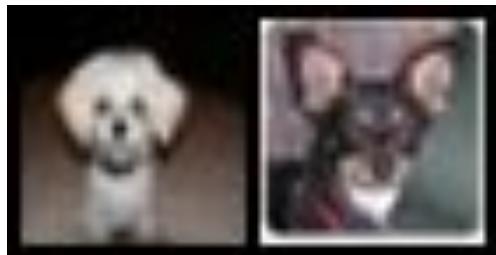


$$\text{SSIM}(x, y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

SSIM (Structural Similarity Index Measure)



Permutation Agnostic SSIM



1st assignment

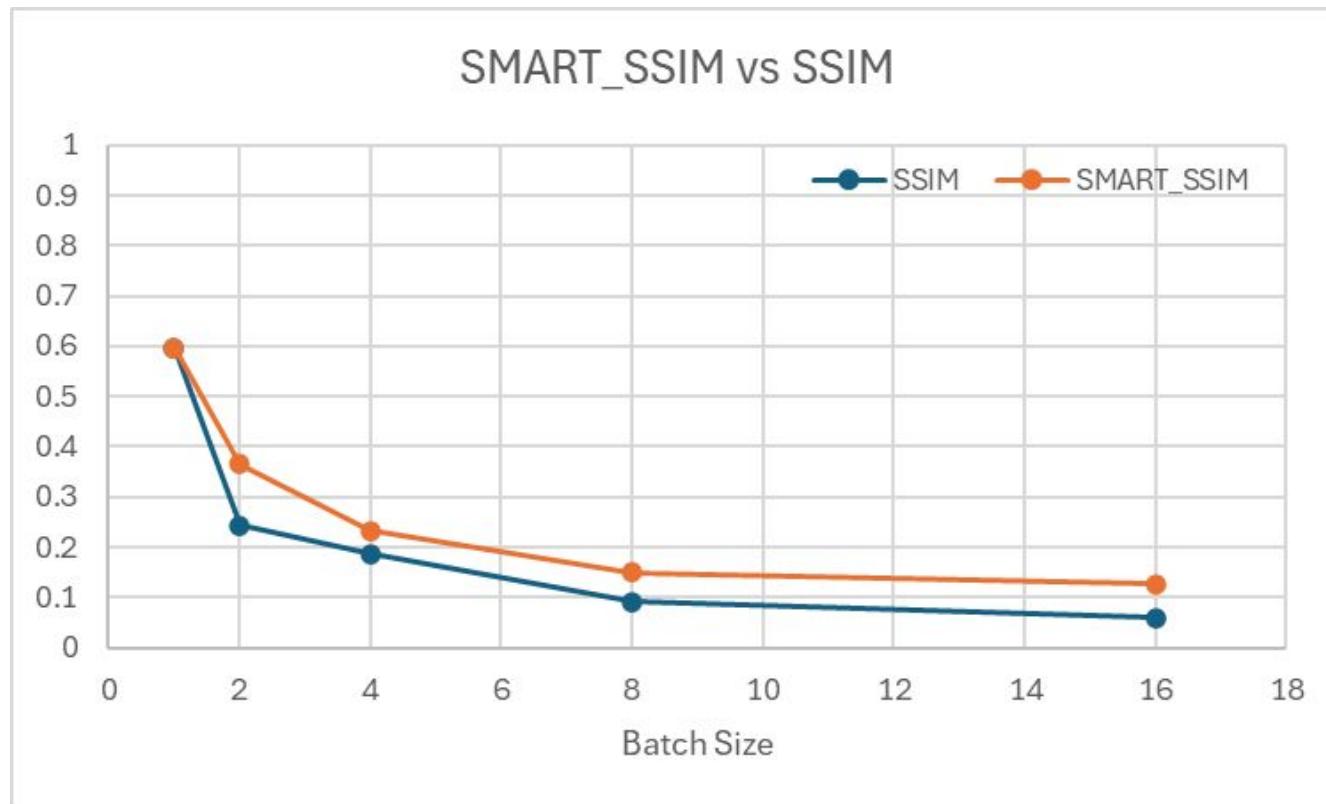
$$\text{SSIM}_1 = \frac{\text{SSIM}(\text{[Abstract]}, \text{[Dog]}) + \text{SSIM}(\text{[Abstract]}, \text{[Dog]})}{2}$$

2nd assignment

$$\text{SSIM}_2 = \frac{\text{SSIM}(\text{[Abstract]}, \text{[Dog]}) + \text{SSIM}(\text{[Dog]}, \text{[Abstract]})}{2}$$

$$\text{SSIM}_{\text{SMART}} = \max(\text{SSIM}_1, \text{SSIM}_2)$$

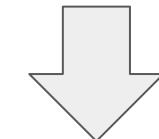
Permutation Agnostic SSIM



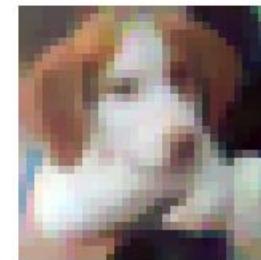
From Pixels to Meaning

∇W

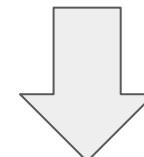
Data reconstruction



reconstructed images



Labeling images



Label_0: dog
Label_1: horse

CLIP for Label Recovery

class prompts

“image of a **dog**”
“image of a **cat**”
...

Text Encoder

reconstructed images

Image Encoder

cos_sim

Similarity Matrix

Image	Dog	Frog	Cat	Truck	...
A	0.7	0.1	0.05	0.05	...
B	0.65	0.12	0.05	0.05	...
C	0.08	0.75	0.1	0.02	...
D	0.1	0.7	0.07	0.02	...

label_0

label_1

Label	Dog	Frog	Cat	Truck	...
0	0.675	0.11	0.05	0.05	...
1	0.09	0.725	0.085	0.02	...

Setup & Evaluation

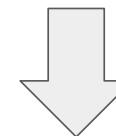
Train model on some
subset of classes

Setup & Evaluation

Train model on some
subset of classes

Data reconstruction

Labeling images

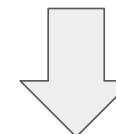


Label_0: **dog**
Label_1: **horse**

Setup & Evaluation

Train model on some
subset of classes

Labeling images



Label_0: **dog**
Label_1: **horse**

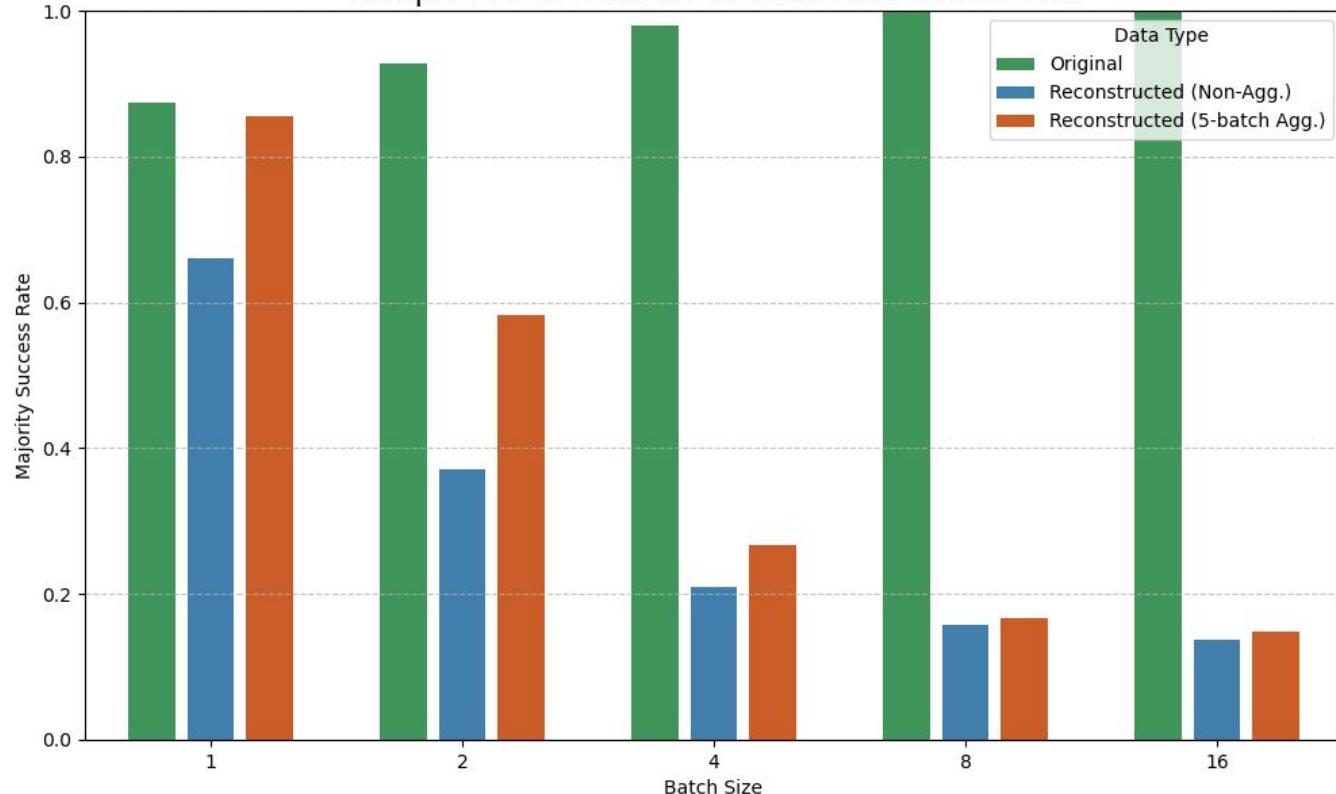
Metric:

- Success of recovery of
majority class (**0/1**)

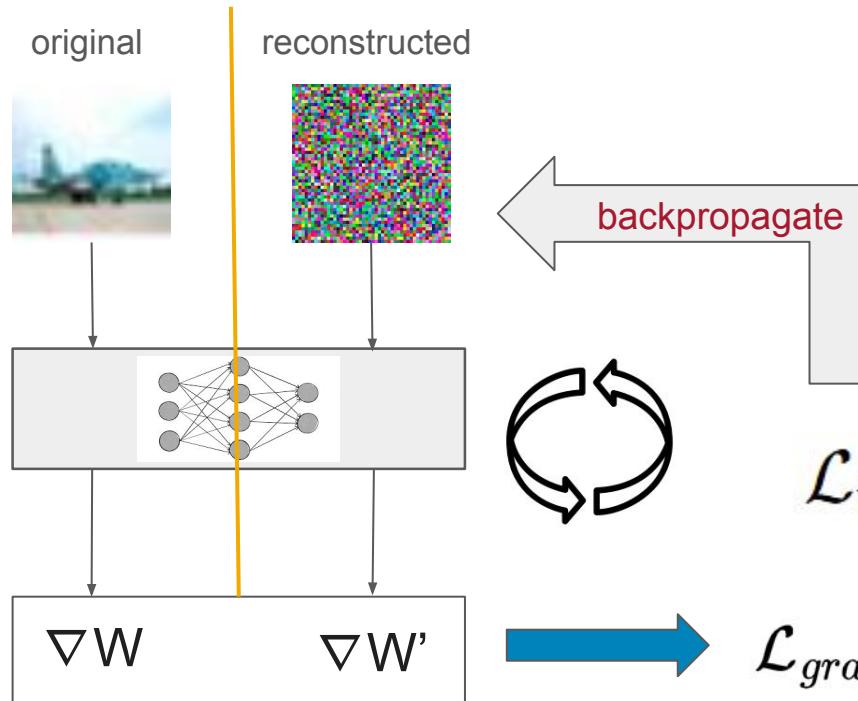
Leakage Drops as Batch Size Increases

Comparison of Success Rates Across Batch Sizes

- Original - almost perfect
- Aggregation improves quality
- Batch Size 4 still 2x better than random



CLIP Guided Reconstruction



Guidance: “image of an airplane”

$$\mathcal{L}_{CLIP} = \frac{1}{N} \sum_{i=1}^N \left(1 - \text{cosine_similarity}(\text{img}^{(i)}, \text{guidance_prompt}^{(i)}) \right)$$

$$\mathcal{L}_{total} \leftarrow \mathcal{L}_{grad} + \lambda_{TV} \cdot \mathcal{L}_{TV}$$

$$\mathcal{L}_{grad} \leftarrow 1 - \text{cosine_similarity}(\nabla', \nabla)$$

Oracle Guidance Improves Quality

Recovering Semantic Labels from CLIP Guidance



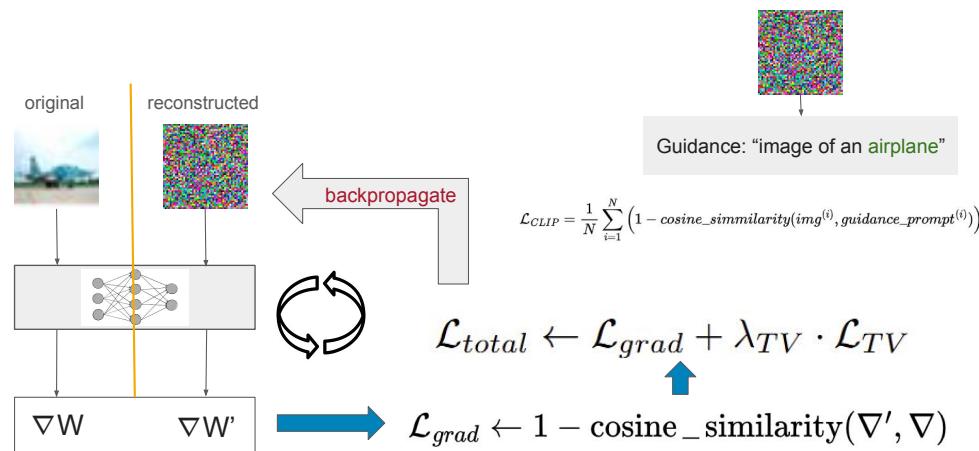
Thank you!

Semantic Label Reconstruction

How to Breach Privacy in Federated Learning

Summary

- Gradients leak semantic information
- Increasing batch size is an effective defensive tool
- Aggregation across multiple batches improves label recovery



References

- [1] Zhu, Ligeng, Zhijian Liu, and Song Han. “Deep Leakage from Gradients.” arXiv, December 19, 2019.
- [2] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020
- [3] Geiping, Jonas, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. “Inverting Gradients -- How Easy Is It to Break Privacy in Federated Learning?” arXiv, September 11, 2020.
- [4] Jeon, Jinwoo, jaechang Kim, Kangwook Lee, Sewoong Oh, and Jungseul Ok. “Gradient Inversion with Generative Image Prior.” In Advances in Neural Information Processing Systems, 34:29898–908. Curran Associates, Inc., 2021.
- [5] Zhao, Bo, Konda Reddy Mopuri, and Hakan Bilen. “iDLG: Improved Deep Leakage from Gradients.” arXiv, January 8, 2020.
- [6] Ma, K., Sun, Y., Cui, J., Li, D., Guan, Z., & Liu, J. (2023). Instance-wise batch label restoration via gradients in federated learning. In Proceedings of the International Conference on Learning Representations (ICLR 2023).
- [7] Fang, Hao, Bin Chen, Xuan Wang, Zhi Wang, and Shu-Tao Xia. “GIFD: A Generative Gradient Inversion Method with Feature Domain Optimization.” In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4967–76, 2023.